Dioxirane Epoxidation of Alkenes

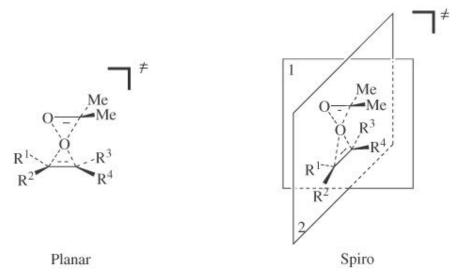
Waldemar Adam, Universität Würzburg, Würzburg, Germany Chantu R. Saha-Möller, Universität Würzburg, Würzburg, Germany Cong-Gui Zhao, Universität Würzburg, Würzburg, Germany

1. Introduction

An ideal oxidant should be highly reactive, selective, and environmentally benign. It should transform a broad range of substrates with diverse functional groups, preferably under catalytic conditions, and be readily generated from commercially available and economical starting materials. Of course, such an ideal oxidant has not yet been invented; however, the dioxiranes, which have risen to prominence during the past few decades, appear to fulfill these requirements in many respects. These three membered ring cyclic peroxides are very efficient in oxygen transfer, yet very mild toward the substrate and product. They exhibit chemo-, regio-, diastereo-, and enantioselectivities, act catalytically, and can be readily prepared from a suitable ketone (for example, acetone) and potassium monoperoxysulfate ($2 \text{KHSO}_5 \cdot \text{K}_2 \text{SO}_4 \cdot \text{KHSO}_4$, Caroate®, Oxone®, or Curox®), which are low-cost commercial bulk chemicals. Throughout the text we shall use KHSO5 to specify this oxygen source, rather than refer to one of the commercial trade names.

Isolated dioxiranes (as solutions in the parent ketones) perform oxidation under strictly neutral conditions so that many elusive oxyfunctionalized products have been successfully prepared in this way for the first time. Epoxidations, heteroatom oxidations, and X-H insertions constitute the most investigated oxidations by dioxiranes. An overview of these transformations is displayed in the rosette of Scheme 1. These preparatively useful oxidations have been extensively reviewed during the last decade in view of their importance in synthetic chemistry. (1-12)

Scheme 1. An Overview of Dioxirane Oxidations (Np = 1-Naphthyl, ED = Electron Donor, EA = Electron Acceptor)


The present review deals mainly with the epoxidation of carbon-carbon double bonds [π bonds in simple alkenes and with these electron donors (ED), electron acceptors (EA), and with both ED and EA; examples 1–4 in the rosette] with either isolated or in situ generated dioxiranes (Eq. 1). In view of the vast amount of material on alkene oxidation (ca. 400 references), the epoxidation of the double bonds in cumulenes (allenes, acetylenes) and arenes is covered in a separate chapter, together with the oxidation of heteroatom functionalities (nonbonding electron pairs; examples 6–9 in the rosette), X-H insertions (σ bonds; examples 10–11 in the rosette), and transition-metal complexes (example 12 in the rosette).

2. Mechanism

Dioxirane epoxidation proceeds strictly with retention of the initial alkene configuration. An impressive and mechanistically valuable example is the cis/trans pair of cyclooctenes (Eq. 2), of which the cis diastereomer leads exclusively to the cis epoxide and the trans congener to the trans epoxide in high yields. (13, 14)

On the basis of the relative reaction rates of cis and trans open-chain alkenes (cis alkene faster than trans alkene by a factor of ten) in the dimethyldioxirane (DMD) oxidation, a spiro transition state was suggested, (15, 16) which is also supported by theoretical work. (17-23) In this oxygen transfer, the plane of the peroxide ring is oriented perpendicular to, and bisects the plane of the π system in the olefin substrate (Scheme 2, right). For this preferred geometry, DMD approaches the cis olefin from the unsubstituted side, which avoids steric interaction between the methyl groups and the alkyl substituents of the double bond. The concerted spiro transition-state structure also explains the results of enantioselective epoxidations by optically active dioxiranes. (24, 25) An exception is given in Scheme 3, for which the planar transition-state structure is favored over the spiro alternative. (26)

Scheme 2. Planar and Spiro Transition-State Structures for the DMD Epoxidation of Alkenes

Scheme 3. Planar and Spiro Transition-State Structures

The fact that no cis/trans isomerization is observed in the oxygen transfer speaks against the earlier proposed diradical mechanism. (5, 27) Although the high stereoselectivity of DMD epoxidations may be accommodated by proposing much faster collapse of the resulting intermediary diradical than isomerization through bond rotation, it would be difficult to rationalize the established steric effects (i.e., cis olefins react faster than the trans isomers). (15, 16) For the diradical mechanism one would expect that the relative rates of cis alkenes and trans alkenes should be nearly the same for such an end-on attack. Moreover, as stated above, epoxidation of trans-cyclooctene with DMD yields solely the corresponding trans epoxide (Eq 2). (13, 14) In view of the high strain energy in trans-cyclooctene (23.2 kcal/mol), (28) cis/trans-isomerization would be expected, should the diradical intermediate intervene. (13) Furthermore, the lack of cyclopropylcarbinyl rearrangement in the epoxidation of 1-vinyl-2,2-diphenylcyclopropane by DMD (Scheme 4) as an ultra-fast radical clock (k_r^{25} » 5 × 10¹¹ s⁻¹) clearly speaks against the involvement of radical intermediates in DMD epoxidations. (13) **Scheme 4.** Radical-Clock Probe for the Mechanism of DMD Epoxidation

Despite this convincing experimental and theoretical evidence in favor of the concerted oxenoid mechanism for dioxirane epoxidations, the appreciable amount of allylic oxidation of α -methylstyrene to 2-phenylpropenol and 2-phenylpropenal by DMD has been interpreted in terms of a radical mechanism. (29, 30) However, when radical species are scrupulously avoided by operating in the presence of molecular oxygen (inhibitor), keeping the reaction temperature below 50° (no homolytic decomposition of the DMD), and avoiding radical-generating solvents such as BrCCl₃, the DMD oxidation of α -methylstyrene gives exclusively the expected epoxide. (13)

3. Scope and Limitations

With dioxiranes, either isolated or in situ generated, different types of alkenes [i.e., unfunctionalized, electron-rich (with electron donors) and electron-poor (with electron acceptors)] have been successfully epoxidized. As a solution in acetone, DMD (isol.) is the most often used dioxirane owing to its convenient preparation and low cost. While methyl(trifluoromethyl)dioxirane (TFD) is much more reactive than DMD, applications are limited because of the high cost and volatility of trifluoroacetone. With DMD (isol.), the scale of the reaction is usually limited to no more than 100 mmol, since the DMD solution in acetone is quite dilute (ca. 0.08 M). In the case of TFD (ca. 0.6 M), the prohibitive cost of trifluoroacetone precludes scales >10 mmol. When a large-scale preparation is desired, the in situ mode [DMD (in situ)] is recommended, for which both biphasic (31-34) and homogeneous (35, 36) media are available. Since the in situ oxidations are carried out in aqueous media, the substrate and the oxidized products must be resistant to hydrolysis and persist at temperatures above 0°. The in situ mode can also be carried out by applying a catalytic amount of ketone, (37-40) which is especially important for enantioselective epoxidations (see the Section on Enantioselectivity), since the optically active dioxiranes cannot be readily isolated.

3.1. Epoxidation of Unfunctionalized Alkenes

Some typical examples are collected in the rosette of Scheme 5. The epoxidation of unfunctionalized alkenes by dioxiranes, especially by DMD, has been mainly studied for elucidation of the reaction mechanism. The degree and pattern of alkyl substitution on the double bond control the reaction rate, with the more highly substituted alkenes being more reactive. The reactivity order is tetra > tri > di > mono (Table A), as is generally observed for electrophilic reagents. (15)

Scheme 5. Dioxirane Oxidation of Unfunctionalized Alkenes

Table A. Relative Rate Constants (K_{REL}) of the Epoxidation of Alkyl Subsituted Alkenes by DMD (isol.) in Acetone at 25 $^{\circ}$ (15)

Alkene	k _{rel}
////	0.5
<u></u>	1.0^{a}
	4.6
<u></u>	8.5
<u>></u> =^	16.1
\rightarrow	24
>= /	36
\rightarrow	106

^a The absolute rate constant is $0.067 \pm 0.001 \text{ M}^{-1}\text{s}$

Steric factors also play an important role (e.g., cis alkenes are more reactive than the corresponding trans isomers). (15, 16) An important exception is the cis/trans-pair of the cyclooctenes (Eq. 2), for which the trans isomer reacts about 100 times faster than the cis isomer because of ring strain. (13, 14) Thus, quite generally, strained double bonds display the highest reactivity toward DMD. This fact is valuable for synthetic purposes since essentially quantitative yields of epoxides can be readily obtained with either isolated or in situ generated dioxiranes. In the latter reaction, the epoxide must resist hydrolysis. An excellent example is the epoxidation of benzvalene with DMD (isol.) at -30°

(Eq. 3), which affords a rather labile epoxide in good yield. (41) This constitutes the most important advantage of DMD (isol.) since the oxidation is performed under strictly neutral and nonhydrolytic conditions, at low temperatures, with acetone as the only byproduct.

Acid-sensitive epoxides can also be prepared by applying the in situ mode, but the pH of the medium must be carefully controlled with buffers. For example, the oxaspiropropane is obtained by epoxidation of the corresponding cyclopropylidenecyclopropane (Eq. 4). (42) Usually such highly strained and hydrolytically labile oxaspiropropanes readily rearrange to the respective cyclobutanones. (42, 43)

3.2. Epoxidation of Electron-Rich Alkenes

Electron-rich alkenes are usually more reactive toward oxidation than simple alkenes, and the corresponding epoxides are generally much more labile toward hydrolysis and thermolysis. With DMD (isol.), a broad variety of such epoxides has been prepared in essentially quantitative yields, and even excessively labile examples have been characterized spectroscopically (Scheme 6). For example, the DMD epoxidation of silyl enol ethers at subambient temperature affords the corresponding epoxides in quantitative yields (Eq. 5). (44, 45) These epoxides have been proposed as intermediates in the peracid oxidation of silyl enol ethers to α -hydroxy ketones (the Rubottom reaction). (46) Indeed, when the in situ mode is employed, the corresponding α -hydroxy ketones are obtained directly. (35) Scheme 6. Dioxirane Oxidation of Electron-Rich Alkenes

OSiMe₃ OSiMe₃ OSiMe₃ OSiMe₃
$$O$$
 (99%) (5)
$$-40^{\circ}, 3 \text{ h}$$

A labile epoxide is derived from 2,3-dimethylbenzofuran (Eq. 6), which even at -20° rearranges to the o-quinomethide. (47-49) To characterize this epoxide by ^{1}H NMR spectroscopy, the fully deuterated DMD- d_{6} (isol.), prepared in acetone- d_{6} , was employed for the oxidation, and the epoxide was detected at -78° . (47) This emphasizes the importance and convenience of the isolated dioxiranes for the

synthesis of exceedingly sensitive substances. Indeed, the epoxide of 2,3-dimethylfuran, prepared by the epoxidation of the furan with DMD- d_6 (isol.), could not be detected even at -100° , and only the rearrangement product hex-3-ene-2,5-dione was observed. (50)

The 8,9-epoxide of aflatoxin B is a well-known carcinogen; however, because of its sensitivity toward hydrolysis, numerous efforts to prepare this epoxide failed. The synthesis is readily accomplished (no yield given) with DMD (isol.) at room temperature (Eq. 7). (51) Once this labile epoxide was available as a pure substance, the mutagenicity caused by its reaction with DNA was unequivocally confirmed.

3.3. Epoxidation of Electron-Poor Alkenes

Dioxirane oxidation of electron-poor alkenes (Scheme 7) offers general access to the corresponding epoxides, which are usually difficult to prepare with peracids, or require the use of basic conditions as in the Weitz-Scheffer reaction. (52) Since the dioxirane is an electrophilic oxidant and these alkenes are electron-poor substrates, the reaction usually needs much longer time (up to several days) compared to that of electron-rich alkenes, which are oxidized usually within minutes. For very recalcitrant electron-poor substrates, a large excess of the dioxirane and elevated temperatures (heating at reflux in acetone, ca. 60°) may be needed to obtain good conversions. Nevertheless, the yields may be very high, since the product epoxides resist hydrolysis and thermolysis. For convenience, DMD (in situ) is employed; for very unreactive electron-poor alkenes, the much more reactive TFD (in situ) may have to be used.

Scheme 7. Dioxirane Oxidation of Electron-Poor Alkenes

The epoxides of a number of α , β -unsaturated aryl ketones (chalcones) (53) have been prepared in excellent yields with DMD (isol.). An illustrative example is shown in Eq. 8. (53) This example is notable because the phenolic group does not require protection in this epoxidation, which hitherto had not been possible with other oxidants.

Numerous examples have been documented in the literature to show the usefulness of this method. For example, the dioxirane oxidation of an α , β

-unsaturated ketone in Eq. 9 is the key step in the total synthesis of verrucosan-2 β -ol and homoverrucosan-5 β -ol. (54)

The in situ mode is quite suitable for such electron-poor substrates, since the epoxides usually survive the aqueous conditions, longer reaction times, and higher temperatures. (55) A good example is the oxidation of *trans*-cinnamic acid by DMD (in situ), which affords the epoxide in nearly quantitative yield (Eq. 10). (31)

Ph
$$O$$
, KHSO₅ Ph O (95%) (10) phosphate buffer (pH 7.5), 2°, 2 h

3.4. Epoxidation of Alkenes with both Electron Donors and Electron Acceptors

The reactivity of the substrates in Scheme 8 depends on the nature of the substituents, but usually they behave more like the electron-poor substrates, so that longer reaction times, a large excess of DMD, and elevated temperatures ($<60^{\circ}$) may be required for complete conversion. β -Alkoxycyclohexenones (Eq. 11), (56) aurones, (57) flavones, (58, 59) and isoflavones (57, 60) are among the most studied substrates of this type. Some of these epoxides, which constitute valuable building blocks in natural product synthesis, have been made available for the first time by dioxirane oxidation. As an example of the in situ mode of oxidation, flavone has been epoxidized by TFD (in situ) in excellent yield (Eq. 12). (35)

Scheme 8. Dioxirane Oxidation of Alkenes with Both Electron Donors and Acceptors

3.5. Chemoselectivity

Chemoselectivity is a crucial feature in planning a synthetic sequence, in which a key step may utilize an epoxidation by dioxiranes on a multifunctionalized substrate. Despite the vast number of oxidations (see Tables I–V) that have already been performed with dioxiranes over the last 20 years, no deliberate efforts to test functional-group compatibility have been made, even for difunctionalized substrates. The study of such chemoselectivities would require determination of quantitative rates [e.g., as was done for the alkyl-substituted alkenes (Table A)], but such data are not available.

Based on the data in Tables I–V and our personal experience, we have compiled a chart on the tolerance of the more common functional groups in dioxirane epoxidations (Table B). These trends are based merely on the conversion of the substrate and/or the yield of the oxidation product, rather than on hard kinetic data or competition experiments. Necessarily, the classification into "compatible, moderately compatible, and incompatible" categories of the functional groups (Table B) is approximate. Expectedly, exceptions must be reckoned with on account of possible electronic and steric effects in a particular substrate. Nevertheless, this compilation provides a useful qualitative guide on how to avoid undesirable misplannings in a synthetic application.

Table B. Functional-Group Tolerance to Epoxidation^a

compatible	moderately compatible	incompatible
$-\text{CO}_2\text{H}; -\text{CO}_2\text{R}$	C=NH; C=NR	—PR ₂
-CONH ₂ ; -CONR ₂	$C=N-NR_2$	—SH; —SR
—COR	C=N-OH; C=N-OR	—ssr
—C≡N	>==NR	—NHNHR
$-NH_3^+; -NR_3^+$	>= 0	$-NH_2$; $-NHR$; $-NR_2$
—SO ₂ R	\longrightarrow - $=$ CR ₂	enolates
$-SO_3H$; $-SO_3R$	-N=C=S; -N=C=O	C=C-SR
—PO(OR) ₂	electron-rich arenes b	C=C-NR ₂
$-NO_2$	polycyclic arenes ^c	C=C-OSiR ₃
$\stackrel{\circ}{\nearrow}_{R}^{R}$	$heteroarenes^d$	C=C-OR
$-O_2H$; $-O_2R$	— — R	C=C-O ₂ CR
—X (F, Cl, Br)	—сно	C=PR ₃
—SiR ₃	—CH(R)OH	>c=s
-SnR ₃	—CH(R)OR'	$C=N_2$
electron-poor arenes e	—CH(R)OAc	—N=O
	N -oxides f	heteroarenes ^g

 $[^]a$ R can be an alkyl or aryl group; the latter are usually less reactive. b With electron donating substituents such as alkyl, hydroxy, and alkoxy groups. c Naphthalene, phenanthrene, anthracene. d Thiophenes. e With electron-withdrawing substituents such as nitro, cyano, and carboxy groups. f These induce dioxirane decomposition. 60a g Pyridines, pyrroles, furans.

Another point that needs clarification on the compatibility trends in Table B is the fact that this chapter is restricted to epoxidations. Unquestionably, an effective discussion of functional group compatibility requires knowledge of how competitive the epoxidations are with the oxidations of heteroatom substrates, arenes and heteroarenes, acetylenes and cumulenes (heterocumulenes), alkanes and silanes, and even organometallic functionalities; however, all of these are dealt with in a separate chapter. Unfortunately, few reliable reactivity data are accessible for such dioxirane oxidations; thus, only a qualitative assessment of trends is feasible.

Provided we compare a set of substrates with similar electronic and steric features, the following reactivity order applies guite generally: heteroatom oxidation > epoxidation > CH insertion. Furthermore, among the heteroatoms, the general reactivity order P > S > N holds in their dioxirane oxidation [i.e., phosphines are more readily oxidized than sulfides (mercaptans), these in turn react faster than amines]. For epoxidations, the ease of oxidation follows the order alkenes > cumulenes > arenes > acetylenes. Arenes, particularly benzene derivatives, must be activated with hydroxy or alkoxy groups to achieve epoxidation, whereas N-heteroarenes undergo N-oxidation and thereafter are inert toward further reaction. For alkenes, the order is ED-C C-ED>C = C-ED>C = C>EA-C = C-ED>C = C-EA>>EA-C = C-EA, in which the last substrate with two electron acceptors is unreactive (e.g., maleic and fumaric acids, esters, and nitriles are inert even toward the very reactive TFD). Finally, for CH insertions, the reactivity order is allylic > benzylic > tertiary > secondary > primary. These general directives should serve as a planning guide for synthesis; a few specific examples follow.

It should be evident from the preceding presentation of trends that certain functional group combinations are incompatible. For example, the epoxidation of a substrate with a double bond in the presence of a heteroatom functionality (sulfide or amine) is quite generally not feasible without protection. In the particular examples, the sulfide (Eq. 13) (61) is oxidized to the sulfoxide (even the sulfone is formed before the double bond is epoxidized), whereas a tertiary amine (Eq. 14), and

acetone,
$$0^{\circ}$$
, 1 h

$$\begin{array}{c}
O \\
\downarrow \\
N \\
\hline
1. BF_3 \bullet Et_2O \\
2. O \\
\hline
0 \\
3. KHCO_3
\end{array}$$
(~100%)

(~100%)

(85%)

N-heteroarenes, e.g., pyridines, pyrimidines, etc., are transformed into their *N*-oxides. An exception is the adenosine-substituted norbornene displayed in Eq. 15, for which the purine functionality is sufficiently less prone toward *N*-oxidation that epoxidation dominates. (61a) This chemoselectivity also holds for enamines, which are preferentially oxidized to the corresponding *N*-oxides; (62, 63) exceptions are *N*, *N*-disilylenamides, which undergo epoxidation. (64) However, as illustrated for the pyrrolidine-substituted cyclohexene in Eq. 14, BF₃ complexation masks the amino functionality and the double bond is

epoxidized without *N*-oxidation. (63) Alternatively, protonation may be employed for this purpose, since an ammonium ion also resists DMD oxidation, as demonstrated for an unsaturated amine (Eq. 16). (65) Such effective group-protected chemoselectivity still needs to be developed for the epoxidation of sulfide-functionalized alkenes, to avoid the inevitable sulfoxidation (Eq. 13). (66)

Acylation of the amino functionality also allows epoxidation, as demonstrated for the allylic amine in Eq. 17, (67) since the amide group resists DMD as well as TFD oxidation.

$$\begin{array}{c|cccc}
NHCOPh & NHCOPh & NHCOPh \\
\hline
O & (-) + O & (-)
\end{array}$$
(17)

That ketone functionalities are compatible, since they are not themselves oxidized by isolated dioxirane, is illustrated for the unconjugated enone in Eq. 18. (32) This is not necessarily true for in situ generated dioxiranes, because ketones that are prone to undergo the Baeyer-Villiger reaction preferentially rearrange to esters with KHSO₅. Since intramolecular, ketone-mediated epoxidations have been documented, (68) it is uncertain whether in this in situ oxidation the inherent keto functionality of the substrate performs the oxygen transfer or whether it is DMD (in situ), or both. A more complex example is offered in Eq. 19, which demonstrates that an allylic keto group and the remote ester functionality do not interfere in this

O , KHSO₅, NaHCO₃ O O (96%) (18)
$$H_2O, pH 7-7.5,$$
18-crown-6, 2 to 8°, 2 h

2-butanone-mediated, in situ epoxidation. (69) Expectedly, a cyano group is also inert toward dioxirane oxidation (DMD as well as TFD), as exemplified in Eq. 20. (67)

The oxidation (actually also an epoxidation) of electron-rich arenes in competition with alkene epoxidation is featured for the medium-sized ring vinylsilane substrate in Eq. 21. (70) Whereas DMD (isol.) affords a mixture of epoxidized and

$$\begin{array}{c} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\$$

arene-oxidized products, the latter are formed exclusively with TFD (isol.). Presumably, steric effects are at play, which are more pronounced for the trifluoromethyl-substituted dioxirane. However, this chemoselectivity (arene oxidation versus epoxidation) depends on the arene functionality. Thus, the DMD oxidation of the cyclic vinylsilane substrate with two methoxy groups in the benzamide ring produces only the epoxide (Eq. 22). (70)

An example of double-bond versus triple-bond chemoselectivity is shown for the conjugated enyne in Eq. 23, which also bears an alcohol functionality. (71) Not only is the latter preserved (steric effect of the tert-butyl group), but also the double bond is exclusively epoxidized. This reaction displays the higher reactivity of C = C vs. C C bonds toward epoxidation by DMD.

$$\begin{array}{c|c}
OH & OH \\
\hline
 & OH \\
\hline
 & OH \\
\hline
 & t-Bu \\
\hline
 & OH \\
\hline
 & (-) \\
\hline
 & (23)
\end{array}$$

Competitive CH insertion vs. epoxidation is well documented for allylic alcohols. For example, whereas the Z isomer in Eq. 24 gives a diastereomeric mixture of threo- and erythro-epoxides with DMD (isol.), (72) equal amounts of epoxidation and allylic oxidation are formed from the E isomer. (73) Presumably, steric effects are again responsible since DMD is sensitive to such encumbrance. (6, 74, 75) A dramatic example is shown in Eq. 25, in which the introduction of an α -silyl substituent changes the exclusive epoxidation to predominant allylic oxidation; unquestionably, steric

OH OH OH OH (-) + OH (-)

OH OH OH OH (-) + OH (-)

OH OH OH OH (-) + OH (-) 50:50

$$R = H \qquad R = PhMe_2Si$$

$$(> 95\%) \qquad (90\%)$$

effects are at play here, because electronically, the silyl group should activate the double bond for epoxidation in view of its electron-releasing nature. In this context, an impressive example is given by the vinylsilyl-substituted cyclohexenol in Eq. 26, which yields only the corresponding enone. (74) An example of aldehyde oxidation to carboxylic acid (C-H insertion) rather than epoxidation is illustrated in Eq. 27 (76) for a phosphonate-substituted enal.

Here electronic effects come to bear, since the double bond is deactivated by the electron-withdrawing phosphonate ester.

Another type of incompatibility of a hydroxy functionality is exhibited in Eq. 28. (71) The labile epoxide functionality of the dioxene is attacked intramolecularly by the nucleophilic OH group to afford the bicyclic furan product through cyclization. Although the alcohol is not oxidized (this example is not a question of oxidative compatibility), it illustrates that remote nucleophilic functionalities may not be tolerated in view of further reaction with the epoxide ring.

These few examples of functional-group compatibility should be helpful for orientation, but more systematic studies (especially quantitative data on the reactivity of the common functionalities (toward dioxirane oxidation) would be desirable. Nonetheless, some combinations of compatible functional groups in Table B are straightforward to deduce: Any of the functionalities in the compatible category may be present in a substrate molecule equipped with groups of the incompatible and moderately compatible type, as long as the groups are chemically compatible toward each other (i.e., a silyl enol ether cannot bear a carboxylic or sulfonic acid group). Not simple to decide are combinations of functional groups from the incompatible and moderately compatible categories, nor within each of these categories. The general

guidelines spelled out in the beginning of this section may be helpful, but are by no means foolproof.

3.6. Regioselectivity

By regioselective epoxidations we mean the preferential oxidation of one of the double bonds in a polyunsaturated substrate. Generally, oxidations by the electrophilic DMD take place at the site of higher electron density and lower steric demand. Good regioselectivities have been observed in heteroatom oxidations (8) and C-H insertions, (76a) but only the regioselectivity in epoxidations (77) is covered in this chapter.

The regioselectivity is mainly dictated by electronic effects in DMD epoxidations; a good example is shown in Scheme 9. Whereas the selectivity of epoxidation of the electron-rich 6,7-double bond over the electron-poor 2,3-double bond is very high in the methyl-substituted compound, the selectivity drops dramatically when the methyl group is replaced by the electron-withdrawing trifluoromethyl group. (78)

Scheme 9. Electronic Effects on the Regioselectivity in the DMD Epoxidations of Methyl 2,6-Octadienoate Derivatives

$$R \xrightarrow{6} \xrightarrow{3} \xrightarrow{2} CO_2Me$$
 $R \xrightarrow{6} \xrightarrow{0} \xrightarrow{3} \xrightarrow{2} CO_2Me$
 $R \xrightarrow{7} \xrightarrow{6} \xrightarrow{3} \xrightarrow{2} CO_2Me$
 $R \xrightarrow{6} \xrightarrow{7} \xrightarrow{7} \xrightarrow{2} CO_2Me$
 $R \xrightarrow{6} \xrightarrow{7} \xrightarrow{7} \xrightarrow{2} CO_2Me$
 $R \xrightarrow{6} \xrightarrow{7} \xrightarrow{7} \xrightarrow{7} CO_2Me$
 $R \xrightarrow{6} \xrightarrow{7} \xrightarrow{7} CO_2Me$
 $R \xrightarrow{7} CO_2Me$

The influence of electronic substituents may be offset by the directing effect of a hydroxy group, which operates through the assistance of intramolecular hydrogen bonding. (8), (79) For instance, selectivity in the epoxidation of geraniol by DMD in protic versus aprotic solvent was shown to shift toward the 2,3-epoxide (from 88:12 in 9:1 MeOH/acetone to 51:49 in 9:1 CCl₄/acetone; Scheme 10). (72) In an aprotic medium (CCl₄/acetone), the allylic hydroxy group of geraniol stabilizes the transition-state structure through hydrogen bonding with the dioxirane and, consequently, the less nucleophilic 2,3-double

bond competes more effectively in the epoxidation. In the protic medium (9:1 methanol/acetone), methanol engages in hydrogen bonding with the dioxirane and the substrate, so that the allylic hydroxy group does not assist as effectively in the transition-state structure to control the selectivity. Thus, the electronic advantage of the more nucleophilic 6,7-double bond dictates the selectivity, so that the isomer ratio represents the relative nucleophilicities of the double bonds. In contrast, the methyl ether does not display this shift in the selectivity because assistance by hydrogen bonding is lacking in the transition-state structure for oxygen transfer and only electronic factors operate.

Scheme 10. Solvent Effects on the Regioselectivity in the DMD Epoxidation of Geraniol and its Methyl Ether (at 30% conversion)

3.7. Diastereoselectivity

Dimethyldioxirane is responsive to the presence of substituents and functionalized groups in alkenes, which often leads to highly diastereoselective epoxidations. (8, 75, 80, 81) A comparative study on the diastereoselectivity of DMD versus *m*CPBA has revealed that DMD exhibits consistently higher diastereoselectivity than *m*CPBA as an epoxidizing reagent, (75, 82) although the difference is usually small. Results of the DMD epoxidation of some 3-alkyl-substituted cyclohexenes indicate that steric interactions between the substituents and DMD control the diastereo-selectivity (Eq. 29). (67, 83)

Epoxidation of 2-menthene and 1,3-dimethylcyclohexene (Scheme 11) by various dioxiranes demonstrates that the size of the dioxirane substituents has a minimal effect on diastereoselectivity. (75) This is because the alkyl groups of the dioxirane cannot interact effectively with substituents at the stereogenic center in the favored transition-state structures, as shown for 2-menthene (Scheme 12).

Scheme 11. Diastereoselective Epoxidation of 2-Menthene and 1,3-Dimethylcyclohexene by Various Dioxiranes

Scheme 12. Favored Transition-State Structure for the Dioxirane Epoxidation of 2-Menthene

Hydrogen bonding plays an important role in the diastereoselective epoxidation of chiral allylic alcohols; an instructive example is shown in Scheme 13. (75) Whereas 3-hydroxycyclohexene displays a higher cis selectivity for both DMD and *m*CPBA, the 3-hydroperoxycylcohexene favors the trans diastereomer for DMD and is unselective for *m*CPBA. Evidently, the allylic hydroxy group in cyclohexenol directs the incoming oxidant through efficient hydrogen bonding to the cis face of the double bond, whereas the hydroperoxy group obstructs such an attack because of steric and, possibly, some electrostatic effects. (77, 84-86) Consequently, the trans epoxide is favored for DMD, which is more sensitive to steric repulsions with substrate substituents than *m*CPBA.

Scheme 13. Diastereoselective Epoxidation of Chiral Cyclohexenes by DMD vs. mCPBA

An example of the importance of medium effects on hydrogen bonding is given for the chiral 2-cyclohexen-1-ol in Eq. 30. (87) The high cis selectivity (relative to the hydroxy substituent) in the nonpolar, aprotic medium (9:1 CCl₄/acetone) derives from intermolecular hydrogen bonding between the hydroxy group and the attacking dioxirane. This cis selectivity remains still high in acetone, but is considerably lower in the protic medium (9:1 MeOH/acetone). Methanol engages in intermolecular hydrogen bonding with DMD, which interferes with the interaction between the allylic hydroxy group and DMD.

CCl₄/acetone (9:1)

96:4

92:8

Similar effects are also observed in the epoxidation of acyclic allylic alcohols. (72) In these compounds, diastereoselectivity depends on the substitution pattern of the allylic alcohol, which controls the preferred conformation via steric interactions in the ground state and presumably also in the transition state. Appreciable π -facial selectivity is expected when hydrogen bonding of DMD by the allylic hydroxy functionality operates and allylic strain helps in aligning the appropriate conformation. As shown in Scheme 14, the allylic alcohol with minimal allylic strain ($R^1 = R^2 = H$) displays no diastereoselectivity in dioxirane epoxidation. In the substrate with only 1.2-allylic strain $(A^{1,2})$, the diastereoselectivity is quite low, but increases steadily with the use of increasingly nonpolar solvents. Evidently, 1,2-allylic strain is not effective enough to steer the π -facial attack. In contrast, for the substrate with only 1,3-allylic strain ($A^{1,3}$; $R^1 = H$, $R^2 = Me$), effective control of π -facial selectivity (85:15) is observed when CCl₄ is used as cosolvent. When both 1,2- and 1,3-allylic strain ($R^1 = R^2 = Me$) operate, expectedly, the π -facial diastereoselectivity is 91:9 in the nonprotic cosolvent CCl₄. These results provide useful mechanistic insight into the oxygen-transfer process. The two transition-state structures for the diastereomeric epoxides with both A^{1,2} and A^{1,3} strain are shown in Scheme 15 for DMD. The erythro transition-state structure is disfavored because of considerable 1,3-allylic strain. In the threo transition-state structure, however, 1,3-allylic strain is not significant since the steric interaction between H and Me is ineffective and, thus, high threo selectivity is obtained. The best conformational alignment (minimum 1,3-allylic strain) of the allylic hydroxy group for effective hydrogen bonding occurs at a dihedral angle (α) between 120–130°, as corroborated computationally. (23, 88, 89)

Scheme 14. Diastereoselectivity in the DMD Epoxidation of Chiral Acyclic Allylic Alcohols with Allylic Strain

\mathbb{R}^1	\mathbb{R}^2	Solvent	threo:erythro
H	Н	acetone	50:50
Me	H	MeOH/acetone (9:1)	57:43
Me	H	acetone	60:40
Me	H	CCl ₄ /acetone (9:1)	70:30
H	Me	MeOH/acetone (9:1)	64:36
H	Me	acetone	67:33
H	Me	CCl ₄ /acetone (9:1)	85:5
Me	Me	MeOH/acetone (9:1)	82:18
Me	Me	acetone	87:13
Me	Me	CCl ₄ /acetone (9:1)	91:9

Scheme 15. Diastereomeric threo and erythro Transition-State Structures in the Hydroxy-Directed Epoxidation of a Chiral Allylic Substrate by DMD; A^{1,2} is 1,2-Allylic and A^{1,3} is 1,3-Allylic Strain

$$A^{1,3}$$
 $A^{1,2}$
 $A^{1,3}$
 $A^{1,3}$
 $A^{1,3}$
 $A^{1,3}$
 $A^{1,3}$

Highly diastereoselective epoxidations by dioxiranes have been widely employed in organic synthesis. For example, glycals have been epoxidized by DMD to afford high diastereoselectivities (Eq. 31); (90) this strategy has been successfully applied in

the synthesis of biologically important oligosaccharides. (91-95) Another example of diastereoselective DMD epoxidation in natural product synthesis is shown in Eq. 32. The epoxide that is potentially useful for the synthesis of taxol was obtained in quantitative yield by DMD epoxidation. (96) High diastereoselectivity is also achieved in the DMD epoxidation of the chiral silyl enol ether and titanium enolate in Eq. 33. (97)

12 h

(53%) dr > 98:2

3.8. Enantioselectivity

TiCp2Cl

1 min

There are several ways to obtain enantiomerically enriched epoxides with dioxiranes. One strategy is to use an achiral dioxirane, e.g., DMD, as stoichiometric oxidant and a prochiral olefin functionalized with an optically active auxiliary. The enantiomerically enriched final product is obtained after removal of the chiral auxiliary. For example, the DMD oxidation of titanium enolates with enantiomerically pure TADDOLs (α , α , α ', α '-tetraaryl-1,3-dioxolane-4,5-dimethanols) as chiral auxiliaries has been applied in the asymmetric synthesis of enantiomerically enriched α -hydroxy ketones. (98) (R)-2-hydroxy-1-phenylpropanone is obtained in up to 63% ee by DMD oxidation (Eq. 34), in which the initially formed epoxide rearranges to an

 α -hydroxy ketone. (98) Asymmetric epoxidation by the achiral DMD is also achieved by employing 2,2-dimethyloxazolidines as chiral auxiliaries in tiglic amide derivatives (Eq. 35). (99)

Ph O Ti O Ar O Ar O Ar Ar H Ar Ar H Ar I -naphthyl
$$O$$
 Ar = 1-naphthyl O Ar O Ar

An alternative approach is to employ DMD as the stoichiometric oxygen source for the preparation of an optically active oxidation catalyst. This is realized in the Jacobsen-Katsuki Mn-catalyzed (100, 101) enantioselective epoxidation of prochiral chromenes, in which DMD is used as oxygen source instead of NaOCI or iodosobenzene. (102) The advantage is that the use of DMD (isol.) allows one to operate in an organic medium (acetone, CH₂Cl₂, etc.), whereas NaOCI requires a biphasic aqueous system and iodosobenzene a heterogeneous solid-liquid mixture. Since the DMD oxidation of manganese is faster than that of the olefinic substrate, the corresponding epoxides are obtained with high enantiomeric excess (Eq. 36). Similarly, isoflavone epoxides have also been obtained with good ee values by employing DMD together with the Jacobsen-Katsuki catalysts. (103, 104)

NC

O

O

Catalyst

acetone,
$$CH_2Cl_2$$
,

 20° , 24 h

Catalyst =

 $t-Bu$

NC

O

(78%)

93% ee

(36)

 $Catalyst = 0$
 Cl
 Cl

The most convenient and direct way to effect enantioselective epoxidation is to use enantiomerically enriched dioxiranes. Such dioxiranes can be generated in situ from the corresponding enantiomerically pure ketones. Thus, asymmetric oxidation may in principle be catalytic in the ketone. Indeed, the chiral ketones in Scheme 16 were employed for the asymmetric epoxidation of olefins at the very beginning of dioxirane chemistry. (105)

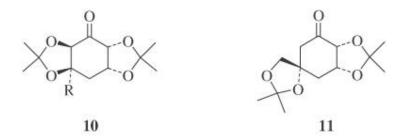
Scheme 16. Early Examples of Optically Active Ketone Catalysts for in situ Asymmetric Epoxidation of Prochiral Alkenes

Unfortunately, enantioselectivity with these ketones is quite low (13% ee), (105) with the best ee value only up to 20%. (106) However, better enantioselectivities (up to 85% ee) have been realized with catalytic amounts of the α -hetero-substituted ketones 123 in Eqs. 37–39. (107-109)

Among the most selective catalysts for enantioselective epoxidation are the C_2 -symmetric ketones **4–9** in Scheme 17. The parent binaphthalene-derived catalyst **4** (R = H) epoxidizes *trans*-stilbene in 47% ee, whereas for *trans*-4,4'-diphenylstilbene epoxide, the ee is as high as 87%. (110) Enantioselectivity is enhanced by introducing substituents at the 2 and 2' positions of the binaphthalene moiety; thus, an ee of 84% (R = 1,3-dioxan-2-yl) is obtained even for *trans*-stilbene epoxide. However, the substrate generality for this catalyst is quite limited. (24, 111)

DME, H₂O, NaHCO₃, pH 7-7.5, rt, 22 h

Ph


Ph

Scheme 17. Optically Active C₂-Symmetric Ketone Catalysts **4–9** for in situ Asymmetric Epoxidation

Several other C₂-symmetric ketones **5-9** (Scheme 17) have been reported for asymmetric epoxidation. (11, 24, 112, 113) These ketones are readily available from the corresponding optically active diols. Although the C₂-symmetric ketone **5** contains the same chiral binaphthalene scaffold as compound **4**, ketone **5** provides much inferior enantioselectivity. (24, 112, 113) The TADDOL-derived ketone **7** affords the highest enantioselectivity for the epoxidation of *trans*-stilbene (65% ee) among these diol-derived ketones. (113) Whereas the C₂-symmetric dinitro-substituted biphenyl-derived ketone **8** performs poorly, (24) the difluoro-substituted ketone **9** acts catalytically under basic conditions (pH 10) and produces *trans*-stilbene epoxide in excellent enantioselectivity (94% ee); for trans alkenes without phenyl substituents, the enantioselectivity drops considerably. (11)

The chiral ketones **10** and **11** (Scheme **18**), which are available from D-(–)-quinic acid, also serve as effective catalysts for asymmetric epoxidations. Whereas ketone **10** displays high enantioselectivity for trans olefins, the lengthy synthesis limits applications. (**114**, **115**) Ketone **11** is more readily prepared from quinic acid and also provides good enantioselectivity, but an excess must be used since it does not persist under the reaction conditions. (**116**)

Scheme 18. Optically Active Ketone Catalysts **10** and **11** Derived from Quinic Acid for in situ Asymmetric Epoxidation

Ketone 12 (Scheme 19) represents one of the best catalysts for the asymmetric epoxidation of unfunctionalized as well as for functionalized trans-substituted and trisubstituted olefins. (25, 117)Under neutral conditions (pH ca. 8, NaHCO $_3$ as buffer), a stoichiometric amount of the ketone 12 is required to achieve good conversions, since this ketone undergoes oxidative degradation under the reaction conditions. (117) Nevertheless, ketone 12 can be employed in sub-stoichiometric amounts (ca. 0.3 equiv.) under basic conditions by adding K_2CO_3 (pH 10.5). (25, 118) The enantioselectivity is usually improved under such basic vs. neutral conditions, especially for allylic alcohols. The ease of preparation and generality of epoxidation make ketone 12 the best choice for asymmetric epoxidation. (119)

Scheme 19. Sugar-Derived Ketone Catalysts 12, 13, 14 for in situ Asymmetric Epoxidation

In contrast to ketone **12**, ketone **13**, prepared from glucose, is ineffective (e.g., no reaction with *trans*-stilbene was observed). (120) Presumably, this ketone suffers Baeyer-Villiger oxidation and is destroyed faster than it epoxidizes the substrate. A similar five membered ring ketone **14**, however, converts *trans*-stilbene to its epoxide in 75% ee. (119) For comparison, the ee values for the epoxidation of *trans*-stilbene by the ketones are collected in Table C. It is evident that the best ee values are obtained with ketone **12**. The corresponding in situ generated dioxiranes have been effectively applied for asymmetric epoxidation. For example, ketone **12** has been employed for the synthesis of enantiomerically enriched α -hydroxy ketones, which are versatile building blocks for natural products, through the epoxidation of silyl enol ethers by the in situ generated dioxirane (Eq. 41). (26) This protocol also has been used to epoxidize enol esters, (121) dienes, (112) and enynes (123, 124) in high enantioselectivity, as well as high chemo- and regioselectivity.

Table C. Comparison of Enantioselectivities in the Asymmetric Epoxidation of *trans*-Stilbene by Various in Situ Generated Dioxiranes

Ph
$$\xrightarrow{\text{ketone, KHSO}_5}$$
 $\xrightarrow{\text{Ph}}$ $\xrightarrow{\text{Netone, KHSO}_5}$ Ph (40)

Ketone	pH of buffer	ee(%)	Configuration
1	8.0	58	R,R
2	8.0	76	R,R
3	8.0	87	S,S
4 (R = H)	8.0	47	S,S
4 (R = Br)	8.0	80	S,S
5	10.5	27	R,R
6	8.0	59	S,S
7	10.5	65	R,R
8	8.0	50	S,S
9	10.5	94	_a
10 (R=H)	10.5	93	R,R
$10(R=CMe_2OH)$	10.5	96	R,R
11	8.0	85	R,R
12	10.5	97	R,R
14	10.5	75	R,R

^aThe absolute configuration was not given.

With the in situ generated dioxirane of ketone 12 the first kinetic resolution of racemic enol acetates has also been achieved through stereoselective epoxidation. (125) An illustrative example is shown in Eq. 42. The efficiency of this method is clearly demonstrated by the high ee values of the unreacted enol acetate and the major trans epoxide product, as well as by the high diastereoselectivity (trans:cis > 95:5).

Bu-t

$$O_2CBu-t$$
 $CH_3CN, DMM, Na_2B_4O_7 buffer,$
 $K_2CO_3, -10^\circ, 2.5 h$

Bu-t

 O_2CBu-t
 O_2C

A highlight of this epoxidation protocol is shown in Scheme 20. (126) The in situ generated dioxirane of ketone 12 has been used for constructing the pentaepoxide of desired configuration, so that the glabrescol analog was obtained in 31% overall yield in only two steps. The pentafuran has been used for revision of the glabrescol structure, a natural product with important biological activity. (126)

Scheme 20. Synthesis of a Glabrescol Analog

4. Comparison with Other Methods

Of the various reagents available for conducting epoxidations, none matches the versatility of dioxiranes. For the epoxidation of simple alkenes, peracids, (127, 128) especially mCPBA, are the most widely used reagents. Although the two oxidants are mechanistically quite similar, steric effects are more pronounced for dioxiranes than peracids. Thus, when the unsaturated substrate is sterically quite encumbered, e.g., vinylsilanes, C-H oxidation may occur instead of epoxidation, (74) which is almost never observed for peracids. The disadvantage of peracids is that they cannot be applied to acid-sensitive substrates and/or products. When an aqueous buffer is employed, the alkene and the resulting epoxide must be resistant toward hydrolysis. In contrast, as already stated above, isolated dioxiranes perform epoxidations under strictly neutral (pH ca. 7) and nonhydrolytic conditions so that labile substrates and products survive. Of course, in the catalytic mode, which necessarily must be conducted in aqueous media (pH ranges between 7.5 and 10.5) for the in situ generation of the dioxirane, the problems of hydrolysis apply. Thus, the catalytic method should be avoided for the preparation of hydrolytically sensitive epoxides.

Compared to other nonmetal-mediated epoxidations (129) [e.g., perhydrates (hexa-fluoracetone/ H_2O_2 (130)) and CH_3CN / H_2O_2 / HO^- (Payne oxidation) (131)], the in situ method of dioxiranes offers advantages in terms of reactivity and selectivity. Thus, Weitz-Scheffer conditions (NaOCl, H_2O_2 / KOH, t-BuO₂H/ KOH) are suited only for electron-poor olefins, (52) and N-sulfonyloxaziridines are limited to electron-rich enolates and enol ethers. (132) This reagent may be activated in the form of oxaziridinium salts, which are considerably more powerful oxidants and epoxidize even simple alkenes. (133, 134) In contrast, dioxiranes oxidize all types of electron-rich and electron-poor double bonds with good selectivities; moreover, the strongly basic conditions (pH > 10) used in the Weitz-Scheffer (52) and Payne (131) epoxidations, as well as the acidic conditions of perhydrates, (130) are avoided with isolated dioxiranes. A comparison of the regioselective and diastereoselective epoxidations of 1-methyl-geraniol by DMD (isol.) versus a few other oxidants is given in Table D.

Table D. Comparison of Regio- and Diastereoselectives for the Epoxidatioon of 1-Methylgeraniol by DMD (isol.) Vs Other Oxidants

Oxidant	Solvent	Epoxide Selectivity	
		regio 7,8:3,4	diastereo athreo:erythro
DMD (isol.) (134a)	CCI ₄	32:64	94:6
<i>m</i> CPBA (134a)	CCI ₄	51:49	90:10
HFAH/ H ₂ O ₂ ^{b,} (135)	CH ₂ Cl ₂	52:48	96:4
VO(acac) ₂ /TBHP ^{a, c,} (134a),	CH ₂ Cl ₂	< 5:95	89:11
Ti(OPr- <i>i</i>) ₄ /TBHP ^{a, c,} (134a)	CH ₂ Cl ₂	< 5:95	98:2
Mn(salen)PF ₆ /PhIO (136)	CH ₂ Cl ₂	53:47	94:6
MTO/UHP ^{a, d,} (134a),	CCI ₄	76:24	88:12

^aDiastereoselectivity of the 3, 4-epoxide regioisomer.

Epoxides can also be prepared by treating alkenes with hydroperoxides, C1O $^-$, PhIO or molecular oxygen as oxygen sources in the presence of transition-metal complexes, e.g., V, Mo, Ti, Mn, Cr, or Co. (137, 138) Hydrogen peroxide can be used as an oxygen donor in combination with catalysts such as tungstic acid and derivatives (139-142) as well as methyltrioxorhenium (MTO). (143-145) Representative examples are also listed in Table D. Evidently, the catalytic mode (in situ generation) of dioxiranes cannot compete in efficacy with metal-catalyzed epoxidations, but the toxicity of most transition metals must be kept in mind in view of environmental problems. Thus, in recent times, the search for nonmetal oxidants has been actively pursued, and dioxiranes can serve as an attractive alternative, especially since now a variety of dioxiranes and reaction conditions have become available. Dioxiranes are also superior to the F_2 / H_2 O /MeCN system (146) in that dioxiranes are easier to handle and less toxic.

Furthermore, dioxiranes play a prominent role in asymmetric epoxidations.

^bHexafluoroacetone hydrate.

^ctert-Butyl hydroperoxide.

^dMethyltrioxorhenium/urea adduct of hydrogen peroxide.

High enantioselectivities have been achieved in the asymmetric epoxidation of unfunctionalized and functionalized trans and trisubstituted olefins by in situ generated optically active dioxiranes. Nevertheless, these enantioselective oxidations hardly surpass the efficiency of environmentally benign enzymatic processes (peroxidase/ H_2O_2 or RO_2H) (147) and the well-known Sharpless-Katsuki epoxidation. (148) The latter is limited to allylic alcohols, and the accessibility of large amounts of enzymes for preparative applications represents a major problem in biocatalytic reactions. Furthermore, the level of enantioselectivity in the epoxidation of cis olefins by enantiomerically enriched dioxiranes has yet to reach that of the Jacobsen-Katsuki Mn(salen)-catalyzed process. (100, 101, 149) Comparative examples are given in Table E for the Sharpless-Katsuki and the Jacobsen-Katsuki asymmetric epoxidations vs. that mediated by the dioxirane derived from ketone 12.

Table E. Comparison of Enantioselectivities in Epoxidations with Ketone 12 ($R^1 = R^2 = Me$) with the Sharpless-Katsuki and the Jacobsen-Katsuki Asymmetric Epoxidations

Substrate	$ \begin{array}{c} R^1 \\ R^1 \end{array} $ $ \begin{array}{c} O \\ O \\ R^2 \end{array} $ $ \begin{array}{c} KHSO_5 \end{array} $	Ti(OPr-i) ₄ , t-BuO ₂ H, tartrate	Mn(salen*) PhIO or NaOCl
Ph_OH	(85%) 94% ee ^{149a}	(78%; 78% ee) ¹⁵⁰	8 <u></u>
Ph	(70%) 90% ee ¹¹⁸	(89%; 98% ee) ¹⁵⁰	S
_{n-Pr} OH	(60%) 78% ee ¹¹⁷	(64%; 93% ee) ¹⁵⁰	-
Ph OH	(75%) 74% ee ^{149a}	(79%; >98% ee) ¹⁵⁰	-
ОН	(83%) 92% ee ^{123,124}	(77%; 93% ee) ¹⁵⁰	9 <u>—0</u>
	(90%) 24% ee ²⁵	_	(88%; 86% ee) ¹⁵¹
Ph	(81%) 28% ee ²⁵	9-	(36%; 30% ee) ¹⁰⁰
Ph	(99%) 96% ee ²⁵	-	(32%; 56% ee) ¹⁵¹
Ph	(85%) 98% ee ²⁵	_	(17%; 81% ee) ¹⁵¹
	(85%) 32% ee ²⁵	-	(78%) 98% ee ¹⁵¹
	(94%) 98% ee ²⁵	ş 	(69%) 93% ee ¹⁵¹
Ph Ph	(89%) 96% ee ²⁵	_	(87%) 88% ee ¹⁵¹

Evidently, dioxirane chemistry is a fast-developing and growing field, and much progress is expected in the years to come. As the tabulated material (Tables 1–5) discloses, much has been achieved in the last 25 years and, unquestionably, dioxiranes have become established as important catalytic (in situ) and stoichiometric (isolated) epoxidants.

5. Experimental Conditions

5.1. Oxidations with Isolated Dioxiranes

5.1.1. General

Although no explosions have ever been documented, the preparation and reactions of isolated dioxiranes should be carried out in a hood with good ventilation, and all safety measures should be taken. Inhalation and direct exposure to skin must be avoided because dioxiranes are strong oxidants and can potentially damage biomolecules such as DNA. (152)

Solutions of isolated dioxiranes are prepared by treating the ketone precursor with KHSO $_5$ in buffered aqueous solutions. Isolation is achieved either through distillation of readily volatile dioxiranes such as DMD (isol.) (153) and TFD (isol.), (154, 155) or by salting out of the dioxirane derived from cyclohexanone (156, 157) (see Experimental Procedures). In view of the much higher electrophilicity of 1,1,1-trifluoro-2-propanone compared to acetone, TFD is generated much faster than DMD (about 1 minute for TFD vs. about 20 minutes for DMD). ketones that readily undergo Baeyer-Villiger rearrangement (cyclobutanone, cyclopentanone), that are not sufficiently electrophilic (benzophenone, acetophenone), or are sterically hindered (pinacolone, adamantanone) are not suitable precursors for the corresponding dioxiranes because either the dioxirane does not persist long enough (first category) or the dioxirane is not generated (last two categories).

The solution of the isolated dioxirane is usually dried over freshly activated molecular sieves (4 Å) or MgSO₄. When rigorously dry solutions are required, further drying over P_2O_5 and subsequently over anhydrous K_2CO_3 is recommended, with only minor loss (<5%) of the dioxirane content. (158)

Magnetic stirring is usually sufficient for oxidation with the isolated dioxirane. For most oxidations, a properly sized, stoppered Erlenmeyer flask is used as reaction vessel. An inert gas atmosphere is not required unless the substrate or the product is air-sensitive or hydrolytically labile. Pipettes fitted with a bulb filler are routinely used for the transfer of dioxirane solutions. For low-boiling dioxiranes, such as methyl(trifluoromethyl)dioxirane [TFD (isol.)], the pipette must be precooled with liquid nitrogen to minimize loss through evaporation. When an excess of dioxirane is used, it is conveniently removed during solvent evaporation, but care should be taken to condense the evaporate and thereby avoid environmental hazards.

5.1.2. Solvents

Most common laboratory solvents are compatible with DMD (isol.) solutions. Acetone, CH₂Cl₂, CHCl₃, CCl₄, and benzene are among the most frequently used cosolvents for epoxidations. With DMD (isol.), cosolvents such as

2-butanone, 1,4-dioxane, THF, *tert*-butyl methyl ether, dimethoxymethane, 1,2-dimethoxyethane, ethyl acetate, and acetonitrile can also be employed. Methanol, ethanol and 2-propanol should not be used since they react slowly with DMD (isol.) even at subambient temperature. (159) For TFD (isol.), ether solvents must be avoided because they are readily oxidized even at low temperature. (160)

5.1.3. Temperature

Epoxidation with DMD solutions [DMD (isol.)] is usually carried out at ambient temperature (ca. 20°). If labile substrates are used or labile products are expected, the reaction can be carried out at subambient or even at dry ice temperatures (–78°). In some cases, the reaction with slowly reacting substrates can be carried out at elevated temperature [e.g., with DMD (isol.) in boiling acetone]. Fortunately, dimethyldioxirane possesses a relatively high activation energy for decomposition (E_a ca. 24.9 kcal/mol), (161) which enables it to tolerate a temperature of 60°.

5.2. Oxidations with in Situ Generated Dioxiranes

If the substrate and product are hydrolytically robust, oxidation with in situ generated dioxiranes is the most convenient mode of operation. The advantages are that a large number of ketone catalysts are available, generation of the dioxirane is more efficient, and the reaction can be carried out on a large scale under catalytic conditions and with asymmetric induction. DMD (in situ) is by far the most frequently used dioxirane, but the more reactive TFD (in situ) is the choice for less reactive substrates such as electron-poor or sterically hindered alkenes.

5.3. Oxidations under Neutral Conditions

5.3.1. Biphasic Media

This is the original protocol for conducting dioxirane epoxidation with DMD (in situ). (31, 32) In this method, the substrate is dissolved in an organic solvent that is immiscible with water (for example, CH₂Cl₂, benzene, etc.), and the oxygen source, monoperoxysulfate, is contained in the aqueous phase, in which the dioxirane is formed from the ketone catalyst (usually acetone). Vigorous stirring with a mechanical stirrer is recommended for efficient reaction. The action of phase-transfer catalysts (18-crown-6, Bu₄NHSO₄) may be helpful. The pH of the aqueous phase is maintained at 7 to 8 by adding a suitable buffer solution or solid NaHCO₃; for this purpose, use of a pH-stat is convenient and advantageous. If 2-butanone is employed as the dioxirane precursor, (34) no cosolvent is necessary because the aqueous medium and 2-butanone, which has good solubilizing properties, constitute a biphasic system.

5.3.2. Homogeneous Media

A water-miscible organic solvent is employed to bring the substrate and/or ketone catalyst into the aqueous phase. Whereas acetonitrile is most commonly used for this purpose, dioxane, dimethoxymethane (DMM), 1,2-dimethoxyethane (DME), or mixtures thereof, have also found application. The pH of the system is readily controlled by a pH-stat, or by adding the required amount of a powdered mixture of solid NaHCO₃ and solid monoperoxysulfate at the beginning of the reaction. Asymmetric epoxidations have all been carried out in homogeneous media; accordingly, this mode of operation has currently gained much importance.

5.4. Oxidations under Basic Conditions in Homogeneous Media

This method is actually an extension of the above-mentioned homogeneous system in which a more basic buffer, such as $0.05 \text{ M} \text{ Na}_2\text{B}_4\text{O}_7$ or $\text{K}_2\text{CO}_3/\text{AcOH}$ buffer (pH ca. 10.5), replaces the NaHCO3 buffer. The advantage of this modification is that some ketone catalysts are more effective and more persistent under basic conditions, which is crucial for conducting catalytic asymmetric epoxidations (cf. Table C). The pH value of the reaction mixture can be conveniently maintained by adding a K_2CO_3 solution.

6. Experimental Procedures

Caution. Dioxiranes are usually volatile peroxides and thus should be handled with care, by observing all safety measures. The preparations and oxidations should be carried out in a hood with good ventilation. *Inhalation and direct exposure to skin must be avoided!*

6.1. Preparation of Isolated Dioxirane Solutions

6.1.1. Dimethyldioxirane [DMD (isol.) (153)]

(The procedure described here is a simplified version of a protocol originally reported by Murray et al.). (162, 163) A 4-L, three-necked, round-bottomed reaction flask was equipped with an efficient mechanical stirrer and an addition funnel for solids, connected by means of a U tube (i.d. 25 mm) to a 250-mL, two-necked receiving flask and the latter was cooled to -78° by means of a dry ice/ethanol bath. The reaction flask was charged with a mixture of water (254 mL), acetone (192 mL), and NaHCO₃ (58 g) and cooled to 5–10° with the help of an ice/water bath. With vigorous stirring and cooling, solid potassium monoperoxysulfate (120 g, 0.195 mol) was added in five portions at 3-minute intervals. Three minutes after the last addition, a moderate vacuum (80–100 mmHg) was applied, the cooling bath (5–10°) was removed from the reaction flask, and, while the mixture was stirred vigorously, the dimethyldioxirane/acetone solution was distilled (150 mL, 0.09-0.11 M, ca. 5% yield), and collected in the cooled (-78°) receiving flask. The concentration of the dimethyldioxirane solution was most conveniently determined by measuring the absorbance at λ_{max} 325 nm (ϵ 12.5 \pm 0.5 M⁻¹cm⁻¹). The acetone solution of dimethyldioxirane was dried over anhydrous K2CO3 and stored in the freezer (-20°) over molecular sieves (4 Å).

6.1.2. Dimethyldioxirane-d₆ in Acetone-d₆ [DMD-d₆ (isol.)]

Occasionally it is necessary to employ the deuterated dioxirane DMD- d_6 (isol.) to facilitate direct NMR spectroscopy of the oxidation mixture, without solvent removal. The following procedure is a modification of the procedure for the small-scale preparation of DMD (isol.) (34): A 250-mL, three-necked, round-bottomed flask, charged with water (20 mL), acetone- d_6 (10 mL), sodium bicarbonate (12 g), and a magnetic stirring bar, was equipped with an addition funnel for solids for the KHSO₅ (25 g, 0.041 mol), a gas-inlet tube, and

a 29-cm air condenser, loosely packed with glass wool. The exit of the air condenser was connected to the top entry of a high-efficiency, double-jacketted, spiral condenser, supplied with methanol coolant (–85 to –78°) from a Colora Ultra Cryostat (Model KT 290 S). The bottom exit of the high-efficiency condenser was attached to a 25-mL receiving flask, kept at dry ice/acetone temperature (–78°). A slow stream of argon gas was passed through the reaction flask, while the solid KHSO $_5$ was added in one portion under vigorous agitation at <15° and application of water-aspirator pressure (15 mmHg). The effluent was collected as a pale yellow solution (6 mL) of DMD- d_6 in acetone (0.08 M), as determined by UV spectroscopy (cf. procedure for DMD (isol.)].

6.1.3. Dimethyldioxirane in Carbon Tetrachloride (164)

"Acetone-free" (actually not **all** of the acetone is removable!) solutions of DMD in the appropriate solvent may be prepared as reported. (164) Here the protocol is given for the preparation of DMD in CCl₄.

The freshly distilled DMD (isol.) solution (60 mL, 0.08 M in acetone), as prepared above, was diluted with 60 mL of cold water and extracted at 5° in a chilled separately funnel with cold CCl₄ (4 × 3 mL), to afford a total volume of 36 mL of extract as a pale yellow solution. The concentration of the DMD solution was determined by iodometry [see procedure for TFD (isol.)], and of the remaining acetone by 1 H-NMR spectroscopy.

To concentrate this DMD solution still further, the combined CCl₄ extracts were washed three times with 1.5 volumes of 0.01 M phosphate buffer (pH 7, prepared by dissolving 3.9 mmol of NaH₂PO₄ and 6.1 mmol of Na₂HPO₄ in 1 L of H₂O) in a cold separatory funnel at 5°. The resulting CCl₄ solution was 0.268 \pm 0.082 M in DMD (by iodometry) and 0.155 \pm 0.082 M in acetone (by 1 H-NMR spectroscopy). Further washing led only to a greater loss of DMD without higher concentrations of DMD. The recovery of DMD from the initial

6.1.4. Methyl(trifluoromethyl)dioxirane in 1,1,1-Trifluoro-2-propanone [TFD (isol.)] (154, 155)

A 250-mL, four-necked, round-bottomed flask was equipped with an efficient mechanical stirrer, an addition funnel for low-boiling liquids [1,1,1-trifluoro-2-propanone (TFP boils at 21°; it is important to use ether-free TFP doubly distilled over P_2O_5 (165))], an addition funnel for solids, and a gas-inlet tube. The exit of the gas-inlet tube was connected to the top entry of a high-efficiency, double-jacketed, spiral condenser, supplied with ethanol coolant (-80°) from a Lauda RLS 6-D cryostat (2.1 kW). The bottom exit of the high-efficiency condenser was attached to a 50-mL, pear-shaped receiving flask, cooled to -60 to -50° by an ethanol bath with liquid nitrogen. A sidearm at the condenser allowed application of a slightly reduced pressure by means of a water aspirator, which controlled the desired pressure automatically.

The 250-mL, four-necked, round-bottomed flask was charged with a slurry of NaHCO₃ (13.0 g, 155 mmol) in water (13 mL) while being cooled in an ice bath. Potassium monoperoxysulfate (24.0 g, 39.1 mmol) was added through the addition funnel to the vigorously stirred slurry of NaHCO₃, while much CO₂ gas evolved. The precooled (0°) addition funnel for liquids was quickly charged with TFP (12.0 mL, 134 mmol) after 80 seconds of CO₂ evolution, and the TFP was added to the reaction mixture within 1 minute. After a further 20 seconds the water aspirator was adjusted to a slight vacuum (650 mmHg) and the pale yellow solution of the TFD in TFP was collected in the cooled (-60 to -50°) receiving flask. After 8 minutes a new batch of potassium monoperoxysulfate (8.0 g, 13 mmol) was added, and the reaction mixture was stirred for an additional 8 minutes. The water aspirator was disconnected and the receiving flask was allowed to warm to -25° (to allow the frozen CO₂ to evolve). The flask was removed after 5 minutes from the high-efficiency condenser, tightly closed with a plastic stopper, and wrapped with aluminum foil to protect the TFD from light. IR (vapor): 1259, 1189, 971 cm⁻¹; (155) ¹H NMR (200 MHz, -20°) δ 1.97 (s); (155) ¹³C NMR (100 MHz, -20°) δ 14.5 (q), 97.3 (q, $J_{C-F} = 40.2 \text{ Hz}$, 122.2 (q, $J_{C-F} = 280.7 \text{ Hz}$); (155) ¹⁷O NMR (54 MHz, -20°) δ 297 (s); (155) ¹⁹F NMR (188 MHz, -20°) δ -81.5 (s); (155) UV: λ_{max} 347 nm (ϵ \sim 9 M⁻¹cm⁻¹ at 0°). (155) The TFD yield was 2.0 ± 0.5% (relative to TFP) and was determined iodometrically (1 mL H₂O , 3 mL glacial acetic acid, 0.5 mL saturated KI solution; addition of 0.200 mL of the TFD solution at 0°; titration with a freshly standardized 0.05 N Na₂S₂O₃ solution). The concentration of TFD in TFP ranged from 0.4 to 0.6 M, the volume of the distillate from 4 to 6 mL (determined gravimetrically by assuming a density of that of TFP, i.e., 1.252 g/mL).

The solution can be stored for several months at -20° with only minor loss of peroxide titer (ca. 5% loss per month). A calibrated pipette, which was cooled briefly with liquid nitrogen, was used to administer conveniently amounts of the oxidant (titer \pm 5% error).

6.1.5. Methyl(trifluoromethyl)dioxirane in Carbon Tetrachloride (27)

Ketone-free solutions of TFD in the appropriate solvent can be prepared as reported. (27) Here the protocol for TFD in CCl₄ is given.

A 50-mL, jacketed separatory funnel was charged with 4–6 mL of the yellow TFD (isol.) solution (0.5–0.6 M) in TFP, as prepared above, and 4–6 mL CCl₄. The solution was washed with 8–12 mL of cold, doubly distilled water (over KMnO₄) at 0°. The TFP went quickly into the aqueous phase while the "ketone-free" TFD was contained in the organic layer. The latter was dried briefly over MgSO₄, quickly filtered, and its TFD content was determined by iodometry [cf. procedure for TFD (isol.)]. The TFD solution in CCl₄ was stored over 4 Å molecular sieves in the freezer (–20°), and protected from exposure to light.

The TFD solution in CCl₄ was further concentrated by slow evaporation of a frozen (liquid N₂) sample under high vacuum (>0.01 mmHg). The effluent was condensed in a cold trap kept at liquid nitrogen temperature. Typically, 2 mL of an 0.85 M solution of TFD in CCl₄ was obtained from 3 mL of a 0.6 M solution.

$$\frac{\text{KHSO}_5, \text{ KOH (15\%, buffer)}}{\text{H}_2\text{O}, -10 \text{ to } 0^{\circ}, 5\text{-}12 \text{ min}}$$
salting out
$$\frac{\text{Na}_2\text{SO}_4}{\text{Na}_2\text{PO}_4}$$

$$\frac{\text{Na}_2\text{SO}_4}{\text{Na}_2\text{HPO}_4}$$
0.2-0.8 M in cyclohexanone

6.1.6. 1,2-Dioxaspiro[2.5]octane (Cyclohexanone Dioxirane) (156, 157)

All materials used in the preparation, including drying agents, were cooled in an ice-salt bath before use. Cyclohexanone (50 mL) and crushed ice (10-15 g) were stirred well with a mechanical stirrer. A cold slurry of potassium monoperoxysulfate (35 g) in water (100 mL) was added to the reaction vessel over a period of 5-10 minutes while the pH was maintained between 7.5 and 8.5 by addition of cold 15% KOH, followed by additional stirring for 1-2 minutes. At this point, the reaction mixture was dark yellow. The reaction mixture was then poured into a cold mixture of 70 g of sodium sulfate, sodium dihydrogen phosphate, and sodium monohydrogen phosphate (4:2:1). This mixture was stirred vigorously for a few seconds and then poured into a cold separatory funnel; care was taken to minimize the transfer of undissolved salts to the separatory funnel. The yellow organic layer was then separated and dried (Na₂SO₄). The separated liquid was then decanted, dried over molecular sieves, and stored in the freezer. The concentration of the dioxirane obtained in this manner was in the range 0.2–0.8 M, as determined by iodometric titration [see the TFD (isol.) procedure above.]

6.2. Epoxidations

6.2.1. Racemic trans-1,2-Diphenyloxirane Method A [with DMD (isol.)] (163)

To a magnetically stirred solution of *trans*-stilbene (0.724 g, 4.02 mmol) in 5 mL of acetone, contained in a 125-mL stoppered Erlenmeyer flask, was added a solution of DMD in acetone (0.062 M, 66 mL, 4.09 mmol) at room temperature (ca. 20°). The progress of the reaction was followed by GLC analysis, which indicated that *trans*-stilbene was converted into the oxide in 6 hours. Removal of the excess acetone on a rotary evaporator (20°, 15 mmHg) afforded a white crystalline solid. The solid was dissolved in CH₂Cl₂ (30 mL) and dried over anhydrous Na₂SO₄. The drying agent was removed by filtration and washed with CH₂Cl₂. The solution was concentrated on a rotary evaporator, and the remaining solvent was removed (20°, 15 mmHg) to give an analytically pure sample of the oxide (0.788 g, 100%). Crystallization from aqueous EtOH gave white plates, mp 69–70°; IR (CHCl₃) 3076, 3036, 2989, 1603, 1497, 1457, 870 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.86 (s, 2 H), 7.26–7.45 (m, 10 H); ¹³C NMR (75 MHz, CDCl₃): δ 62.8 (d), 125.4 (d), 128.2 (d), 128.4 (d), 137.0 (s).

6.2.2. Method B [with DMD (in Situ)] (36)

To a 5-L, three-necked flask, equipped with a mechanical stirrer, was added *trans*-stilbene (18.0 g, 100 mmol), a mixture of CH₃CN and dimethoxymethane (1.17 L, 2:1 v/v) as solvent, 0.1 M aqueous K_2CO_3 (330 mL), acetone (220 mL, 3 mol), and tetrabutylammonium hydrogen sulfate (1.5 g). Potassium monoperoxysulfate (92.2 g, 150 mmol) in 330 mL of aqueous 4×10^{-4} M EDTA and K_2CO_3 (92.2 g, 667 mmol) in 330 mL of H₂O were added separately by means of addition funnels over a period of 2 hours, while the pH was adjusted to 10.5 by administering glacial acetic acid dropwise. Subsequently, the reaction mixture was extracted with hexane (3 × 1.5 L), the extracts were washed with brine (1 × 1 L), dried (Na_2SO_4), concentrated (20°, 15 mmHg), and the residue was purified by flash chromatography on silica gel (deactivated with 1% Et₃N in hexane) to yield *trans*-1,2-diphenyloxirane as a white solid (17.0 g, 87%).

6.2.3. (R, R)-1,2-Diphenyloxirane with Ketone 12 Method A (Neutral, in Situ Non-Catalytic Conditions) (25, 117)

An aqueous solution of Na₂EDTA (1 × 10⁻⁴ M, 10 mL) and a catalytic amount of tetrabutylammonium hydrogen sulfate (15 mg) were added under vigorous magnetic stirring at 0° to a solution of trans-stilbene (0.18 g, 1.00 mmol) in acetonitrile (15 mL), contained in a stoppered 100-mL Erlenmeyer flask. A mixture of potassium monoperoxysulfate (3.07 g, 5.00 mmol) and sodium bicarbonate (1.3 g, 15.5 mmol) was pulverized and a small portion of this solid mixture was added to the reaction mixture to bring the pH to above 7. After 5 minutes, 0.77 g (3.0 mmol) of ketone 12 was added in equal portions over a period of one hour. Simultaneously, the rest of the pulverized solid mixture of KHSO₅ and sodium bicarbonate was added in equal portions within 50 minutes to maintain the pH at 7. After completion of the addition, the reaction mixture was magnetically stirred for another hour at 0°, diluted with water (30 mL), and extracted with hexane (4 × 40 mL). The combined extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated (20°, 15 mmHg). The product was purified by flash chromatography on silica gel (deactivated with 1% Et₃N in hexane), first eluted with hexane and subsequently with a 50:1 mixture of hexane/Et₂O to afford (*R*,*R*)-1,2-diphenyloxirane as a white solid (0.149 g, 73%, 95.2% ee). The ee value was determined by ¹H-NMR spectroscopy with Eu(hfc)₃ as the shift reagent.

6.2.4. Method B (Basic, in Situ Catalytic Conditions) (25)

To a solution of *trans*-stilbene (0.181 g, 1.00 mmol) in CH₃CN /DMM mixture (15 mL, 1:2 v/v), contained in a stoppered, 100-mL Erlenmeyer flask, was added an aqueous solution (10 mL) of 0.05 M Na₂B₄O₇ · 10H₂O , which contained 4 × 10⁻⁴ M Na₂EDTA, tetrabutylammonium hydrogen sulfate (15 mg, 0.04 mmol), and 0.0774 g (0.30 mmol) of ketone **12**. An aqueous solution (6.5 mL) of potassium monoperoxysulfate (1.00 g, 1.60 mmol) contained in 4×10^{-4} M Na₂EDTA and an aqueous solution (6.5 mL) of K₂CO₃ (0.93 g, 6.74 mmol) were added dropwise with vigorous magnetic stirring at 0° over a period of 30 minutes through two separate addition funnels. The reaction

mixture was then diluted with water (30 mL) and extracted with hexane (4 × 40 mL). The combined extracts were washed with brine, dried (Na_2SO_4), filtered, and concentrated (20° , 15 mmHg). The product was purified by flash chromatography on silica gel (deactivated with 1% Et₃N in hexane), by first eluting with hexane and subsequently with a mixture of 50:1 hexane/Et₂O, to afford (R,R)-1,2-diphenyloxirane as a white solid (0.166 g, 85%, 97.9% ee), mp 68–70° (hexane); [α]_D²⁵ +356.1° (c 0.95, benzene). The ee value was determined by 1 H-NMR spectroscopy with Eu(hfc)₃ as the shift reagent.

6.2.5. (S,S)-1,2-Diphenyloxirane with Ketone 4 (in Situ Catalytic Conditions) (24)

To a solution of *trans*-stilbene (18.0 mg, 0.10 mmol) and ketone **4** (R = H) (29.6 mg, 0.10 mmol) in CH₃CN (1.5 mL) contained in a stoppered, 25-mL Erlenmeyer flask at room temperature (ca. 20°) was added a 4×10^{-4} M aqueous Na₂EDTA solution (1 mL). To this solution was added in portions a solid mixture of pulverized sodium bicarbonate (130 mg, 1.55 mmol) and potassium monoperoxysulfate (614 mg, 1.00 mmol), while vigorously stirring magnetically. After 7 minutes, the reaction mixture was poured into water (20 mL), extracted with CH₂Cl₂ (3 × 20 mL), and dried (Na₂SO₄). Upon removal of the solvent (20°, 15 mmHg), the residue was purified by flash chromatography on silica gel (deactivated with 2% Et₃N in hexane), by first eluting with hexane (50 mL), followed by a 1:19 mixture of EtOAc/hexane (100 mL), which gave (*S*,*S*)-1,2-diphenyloxirane [19.4 mg, 99%, 47% ee]. Subsequent elution with a 2:3 mixture of EtOAc/hexane afforded 27.6 mg (93% recovery) of ketone **4**. The ee was determined by ¹H-NMR spectroscopy with Eu(hfc)₃ as chiral shift reagent.

6.2.6. Racemic 2,3-Epoxy-3-phenyl-1-propanol with

1,1-Dioxotetrahydrothiopyran-4-one as Ketone Catalyst (38)

A 50-mL stoppered Erlenmeyer flask was charged with a CH₃CN solution (9 mL) of cinnamyl alcohol (2.0 mmol), ketone catalyst (5 mol%), and an aqueous Na₂EDTA solution (6 mL, 4×10^{-4} M). At room temperature was added, with vigorous magnetic stirring, a pulverized solid mixture of KHSO₅ (1.84 g, 3.0 mmol) and NaHCO₃ (0.78 g, 9.3 mmol) within 1.5 hours. The reaction progress was monitored by TLC (silica gel) and after complete consumption of the substrate, the reaction mixture was extracted with EtOAc (2 × 50 mL). The combined organic layers were dried (MgSO₄) and concentrated (20°, 15 mmHg). The residue was purified by flash chromatography on silica gel to afford the epoxide (95% yield) and ketone catalyst (80% recovery).

6.2.7. (R,R)-2,3-Epoxy-3-phenyl-1-propanol with Ketone 12 (in Situ Catalytic Conditions) (149a)

A 100-mL, two-necked, round-bottomed flask, equipped with a magnetic stirrer, was charged with cinnamyl alcohol (136 mg, 1.0 mmol), ketone 12 (77.4 mg, 0.30 mmol), and tetrabutylammonium hydrogen sulfate (15.0 mg, 0.016 mmol) in 10 mL of DMM/ CH₃CN (2:1 v/v). An aqueous solution (7 mL) of

 $K_2CO_3/HOAc$ [prepared by mixing 100 mL of 0.1 M aqueous K_2CO_3 and 0.5 mL HOAc (pH 9.3)] was added with stirring and cooling in a NaCl/ice bath (–10°). This was followed by the dropwise addition of an aqueous solution (5 mL) of KHSO $_5$ (0.85 g, 1.38 mmol) in 4 × 10 $^{-4}$ M Na $_2$ EDTA and an aqueous solution (5 mL) of K_2CO_3 (0.80 g, 5.8 mmol), separately by means of syringe pumps, over a period of 3 hours. After CH_2CI_2 (20 mL) and water were added, the aqueous layer was extracted with CH_2CI_2 (3 × 20 mL), and the combined organic phases were washed with brine, dried (Na_2SO_4), and concentrated (20°, 15 mmHg). The residue was purified by flash chromatography on silica gel [deactivated with 1% Et $_3N$ in hexane/Et $_2O$ (2:1 v/v)] by elution with a hexane/Et $_2O$ mixture [first 2:1 (v/v) and subsequently 1:1 (v/v)], to afford 0.128 g (85% yield) of the epoxide (94% ee, by chiral HPLC on a Chiracel OD column).

6.2.8. threo- and erythro- α ,3,3-Trimethyloxiranemethanol [with DMD (isol.)] (72)

A stoppered 25-mL Erlenmeyer flask was charged at 20° with 72 mg (0.72 mmol) of 4-methylpent-3-en-2-ol and a 0.069 M solution (10 mL, 0.73 mmol) of DMD (isol.). The mixture was stored at 20° in the dark until the peroxide test (KI/HOAc) was negative. The solvent was removed (20°, 20 mmHg) and 81 mg (97% yield) of a 76:24 mixture of threo/erythro epoxides (by ¹H-NMR analysis) were obtained as a colorless oil.

6.2.9. threo- and erythro- α ,2,3-Trimethyloxiranemethanol [with TFD (isol.)] (80)

A stoppered 25-mL Erlenmeyer flask was charged at 0–10° with 45 mg (0.45 mmol) of (*Z*)-3-methylpent-3-en-2-ol and a 0.05625 M solution (8 mL, 0.45 mmol) of TFD (isol.). The mixture was stored in the dark at 0–10° until the peroxide test (KI/HOAc) was negative. The solvent was removed (20°, 15 mmHg) and 49.6 mg (95% yield) of a 85:15 mixture of threo/erythro epoxides (by ¹H-NMR analysis) were obtained as a colorless oil.

6.2.10. 7-Oxatetracyclo[4.1.0.0^{2,4}.0^{3,5}]heptane (Benzvalene Epoxide) [with DMD (isol.)] (41)

A 1-L, two-necked, round-bottomed flask was equipped with a magnetic stirring bar, gas-inlet and gas-outlet tubes, and charged with an anhydrous solution of benzvalene (1.97 g, 25.2 mmol) in Et₂O (60 mL). The flask was cooled to -30° under a nitrogen atmosphere and, while stirring magnetically, 400 mL of a 0.0483 M solution of DMD (19.3 mmol) was added at such a rate that the reaction temperature was kept below -20° . After complete addition, the mixture was stirred at -25° for another 3 hours and then concentrated (0°, 15 mmHg). The residue was distilled (bulb-to-bulb, 20°, 0.01 mmHg), the receiving flask being kept at -78° , to afford 1.12 g (62%) of the epoxide as a colorless liquid containing a trace of solvent.

6.2.11. (R)-2-hydroxy-1-Phenylpropan-1-One with Ketone 12 under in Situ Conditions (26, 166)

To a solution of (*Z*)-*tert*-butyldimethyl[(1-phenyl-1-propenyl)oxy]silane (24.8 mg, 0.100 mmol) in CH₃CN (1.5 mL) was added with vigorous magnetic

stirring at 0° an agueous solution (4 × 10⁻⁴ M) of Na₂EDTA (1.0 mL). A mixture of KHSO₅ (307 mg, 0.500 mmol) and NaHCO₃ (130 mg, 1.55 mmol) as a pulverized solid was added in small portions over 50 minutes. Ketone 12 (77.5 mg, 0.300 mmol) was added in portions simultaneously. The mixture was stirred magnetically for 18 hours at 0°, and was then diluted with water and extracted with hexane. The hexane extracts were combined and concentrated (40°, 250 mmHg). Methanol (5 mL) was added to the residue and the solution was stirred for 2 hours for complete desilylation. After removal of the methanol (20°, 15 mmHg), the crude product was purified by silica gel chromatography (1:2 Et₂O/ petroleum ether as eluent) to give the title compound as a colorless oil (10.4 mg, 69%, 82% ee). The ee value was determined by HPLC analysis on a Chiralcel OD column, 9:1 hexane/2-propanol, flow 0.6 mL/min. IR (film): 3700–3100 (br), 3063, 2981, 2933, 1682, 1597, 1578, 1451, 1271 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ 1.42 (d, J = 7.0 Hz, 3 H), 3.81 (s, 1 H, OH), 5.14 (q, J = 7.0 Hz, 1 H), 7.44–7.59 (m, 3 H), 7.87–7.95 (m, 2 H). ¹³C NMR (63 MHz, CDCl₃): δ 22.5 (q), 69.6 (d), 128.9 (d), 129.1 (d), 133.6 (s), 134.2 (d), 202.6 (s).

6.2.12. trans-(2-Methyloxiranyl)Benzamide [with DMD-d₆ (isol.)] (167)

A 5-mm NMR tube was charged at -78° under a N_2 atmosphere with 9.0 mg (55.8 µmol) of the enamide in 50 µL of CDCl₃. By means of a syringe, 750 µL (55.9 µmol) of a well-dried (over 4 Å molecular sieves) 0.074 M solution of DMD- d_6 (isol.) in acetone- d_6 was added rapidly at -78° . After 1 hour, the NMR tube was submitted to low-temperature (-50°) ¹H-NMR and ¹³C-NMR spectroscopy, which showed that the epoxide was obtained quantitatively. At temperatures higher than -50° , the epoxy enamide deteriorated into an intractable, undefined product mixture. ¹H NMR (acetone- d_6 , 200 MHz, -50°): δ 1.37 (d, J = 6.8 Hz, 3 H, CH₃), 3.36 (m, 1 H, CH), 4.82 (m, 1 H, CH), 7.49–7.59 (m, 3 H), 7.86–7.99 (m, 2 H), 8.14 (br s, 1 H; NH); ¹³C NMR (acetone- d_6 , 50 MHz, -50°): δ 16.8 (q, CH₃), 53.3 (d, CH), 61.6 (d, CH), 127.8 (2xd), 129.1 (2xd), 132.6 (d), 134.2 (s), 168.8 (s, CO).

6.2.13. 2,3-Epoxy-2,3-Dihydro-2,3,4-Trimethylbenzo[b]furan [with DMD (isol.)] (48)

A cooled (-78° , 0.086 M) solution of dimethyldioxirane in acetone (15 mL, 1.30 mmol), dried over 4 Å molecular sieves, was rapidly added to a cooled (-78°), magnetically vigorously stirred solution of 2,3,4-trimethylbenzofuran (160 mg, 1.00 mmol) in dry CH₂Cl₂ (2 mL) under a N₂ atmosphere. Stirring was continued for 3 hours at -78 to -20° . The solvent was removed (-20° , 0.001 mmHg) to afford the benzofuran epoxide essentially quantitatively, as confirmed by 1 H-NMR and 13 C-NMR analysis at -20° . 1 H NMR (200 MHz, acetone- d_6 , -20°): 1 5 1.82 (s, 3 H), 1.84 (s, 3 H), 2.46 (s, 3 H), 6.74–6.78 (m, 2 H), 7.12–7.70 (m, 1 H). 13 C NMR (50 MHz, acetone- d_6 , -20°): 1 5 13.9 (q), 14.7 (q), 18.8 (q), 67.2 (s), 94.8 (s), 109.2 (d), 123.7 (d), 128.4 (s), 129.6 (d), 136.6 (s), 160.4 (s).

6.2.14. Methyl 3,4,6-Tri-O-Pivaloyl- β -D-Glucopyranoside and Methyl 3,4,6-Tri-O-Pivaloyl- α -D-mannopyranoside [with TFD (in Situ)] (35)

A stoppered 10-mL Erlenmeyer flask, equipped with a magnetic stirring bar, was charged with a CH $_3$ CN solution (1 mL) of 3,4,6-tri-*O*-pivaloyl-D-glucal (40 mg, 0.1 mmol) and an aqueous solution of Na $_2$ EDTA (0.4 mL, 4 × 10 $^{-4}$ M). After cooling to 8° by means of an ice bath, TFP (0.2 mL) was added by means of a precooled syringe. A powdered mixture of solid KHSO $_5$ (0.307 g, 1.00 mmol) and solid NaHCO $_3$ (0.130 g, 155 mmol) was added to the vigorously stirred mixture. The reaction was complete within 15 minutes, as

assessed by TLC (silica gel) monitoring. Anhydrous Na_2SO_4 (3.0 g) was added at 20° followed by dry MeOH (10 mL). TLC (silica gel) monitoring indicated that ring-opening of the epoxide was complete within 1 hour. After the addition of water (20 mL), the reaction mixture was extracted with CH_2Cl_2 (3 × 20 mL), and the combined extracts were dried (Na_2SO_4) and concentrated (20°, 15 mmHg). The residue was purified by flash column chromatography on silica gel, with a 23:77 mixture of EtOAc and hexane as eluent, to afford 28.2 mg (63% yield) of glucopyranoside as a colorless solid and 9.5 mg (21% yield) of mannopyranoside as a colorless oil.

6.2.15. 17 α -hydroxy-21-Hydroxypregna-4.9(11)-diene-3,20-dione with 1-Dodecyl-1-Methyl-4-Oxopiperidinium Trifluoromethanesulfonate as Ketone Catalyst (168)

A 250-mL, three-necked, round-bottomed flask was equipped with a Brinkmann-Heidolph overhead stirrer (Model No. 2050). The glass stirring shaft was fitted with an elliptically shaped Teflon stirring paddle (40-mm long × 18-mm high × 3-mm wide). A glass pH probe/electrode (Broadley-James Model No. C1207A-121-A03BC), connected to a Brinkmann pH-stat (Brinkmann Models: E512 pH meter, Impulsomat No. 473, and Dosimat No. E412), was inserted into the flask at one of the side necks of the flask and clamped such that the bottom of the probe was 0.5-1.0 cm from the bottom of the flask. The third neck was fitted with two separate Teflon tubes, one that delivered KOH (2 N) (the rate of addition was controlled by the pH-stat) and the other that delivered aqueous KHSO₅ [(0.45 M, stabilized by 0.43 mM Na₂EDTA), its rate of addition controlled by a syringe pump (Sage Instruments Model 355)]. The 250-mL flask was charged with phosphate buffer (23 mL, pH 7.8), CH₂Cl₂ (20 mL), the steroid (75 mg, 0.21 mmol), and the ketone catalyst (9 mg, 0.021 mmol). The contents were cooled to 0° by means of an ice bath, and with vigorous stirring (800–1000 rpm), the aqueous KHSO₅ solution (4.6 mL, 1.98 mol) was added by means of the syringe pump at such a rate that the pH of the reaction mixture was kept constant at 7.5 (± 0.1) by

automated simultaneous addition of the 2 N aqueous KOH solution (ca. 80 minutes). The temperature was kept at 0° by cooling with an ice bath. The reaction progress was monitored by TLC (silica gel), and after complete consumption of the steroid, the organic layer was removed. To the aqueous layer was added brine (60 mL) and the solution was extracted with CH_2Cl_2 (4 × 10 mL). The combined organic layers were dried (NaSO₄) and concentrated (20°, 15 mmHg). The residue was purified by silica gel chromatography with a 1:1 mixture of EtOAc/hexane as eluent to afford 61 mg (81% yield) of the colorless product; mp 208–209° after recrystallization from CH_2Cl_2 /hexane.

6.2.16. 2,3-Epoxy-1-(2-Hydroxyphenyl)-3-Phenyl-1-Propanone [with DMD (isol.)] (34)

A stoppered 100-mL Erlenmeyer flask equipped with a magnetic stirring bar was charged with chalcone (205 mg, 0.92 mmol) in CH₂Cl₂ (10 mL), and 17.5 mL of a 0.060 M (1.05 mmol) acetone solution of DMD (isol.) was added rapidly with stirring at 20°. After 12 hours of stirring, a fresh batch of 17.5 mL of a 0.060 M (1.05 mmol) acetone solution of DMD (isol.) was added rapidly and stirring was continued for another 12 hours at 20°. The reaction progress was monitored by TLC (silica gel). After complete consumption of the chalcone, the solvent was removed (20°, 15 mmHg) and 220 mg (~100%) of pure epoxide were obtained as a colorless powder, mp 73–74° (from CHCl₃/petroleum ether).

6.2.17. 1-(4-Anisyl)-2,3-Epoxy-3-Phenyl-1-Propanone with 2-Butanone as Ketone Catalyst [in Situ Catalytic Conditions] (34)

To a vigorously stirred (mechanical agitation) mixture of the chalcone (3.57 g, 15.0 mmol), 2-butanone (150 mL), and phosphate buffer, prepared by dissolving 0.177 g of KH₂PO₄ and 0.648 g of Na₂HPO₄ in 150 mL of water, contained in a 1-L, 3-necked, round-bottomed flask, was slowly added (6 hours) at room temperature a saturated aqueous solution (200 mL) of KHSO₅ (45 g, 0.073 mol). The pH of the mixture was kept at 7.3-7.5 by continuously administering an aqueous KOH (3%) solution. After 18 hours of additional stirring, a new batch of a saturated, aqueous solution (200 mL) of KHSO₅ (45 g, 0.073 mol) was added slowly (6 hours) and the mixture was stirred for an additional 18 hours. The reaction progress was monitored by TLC (silica gel). After complete consumption of the chalcone, solid NaCl was added to the cloudy reaction mixture until saturation, the organic phase was separated by decantation, and the aqueous phase was extracted with CH_2CI_2 (4 × 50 mL). The combined organic layers were dried (MgSO₄), filtered, and the solvent was evaporated (20°, 15 mmHg) to afford 3.60 g (94%) of the epoxide in high purity (by ¹H-NMR spectroscopy) as colorless plates, mp 75–76°.

6.2.18. 1a,7a-Dihydro-1a-Phenyl-7H-Oxireno[b][1]Benzopyran-7-One (Flavone Epoxide) [with DMD (isol.)] (59)

A stoppered 125-mL Erlenmeyer flask was charged with 187 mg (0.840 mmol) of flavone in 10 mL CH_2CI_2 . While stirring magnetically, a total of 61.5 mL of a 0.084 M (5.14 mmol) DMD solution in acetone was added at 20° in equal portions at three 12-hour intervals. After 36 hours, the conversion of the flavone was complete, as confirmed by TLC (silica gel), and the solvent was removed (20° at 15 mmHg) to yield 200 mg (~100%) of the epoxide as colorless needles, mp 99–100° (from $CHCI_3$ /petroleum ether).

(1aS,7aR)-epoxide (23%), 90% ee

6.2.19. (1aS,7aR)-1a,7a-Dihydro-4-Mesyloxy-7a-(2-Methoxyphenyl)-7H-oxi reno[b][1]Benzopyran-7-One with Jacobsen's (S,S)-Catalyst [with DMD (isol.)] (103, 104)

A stoppered 250-mL Erlenmeyer flask equipped with a magnetic stirring bar was charged with the isoflavone (346 mg, 1.00 mmol) and the *S*,*S*-configured Jacobsen's Mn(III)salen complex (101 mg, 0.16 mmol, 16 mol %) in dry CH₂Cl₂ (10 mL). While stirring magnetically, 12.0 mL of a 0.05 M (0.6 mmol) acetone solution of DMD (isol.) was added at 20°. The reaction progress was monitored by TLC (silica gel), and new batches (as above) were added in 24-hour intervals until the consumption of the isoflavone halted [40% conversion after 10 days reaction time, during which a total of 120 mL (6.0 mmol) of DMD (isol.) in acetone was administered]. The solvent was evaporated (25, 15 mmHg) and the product was purified by silica gel chromatography, with toluene/EtOAc (4:1 v/v) as eluent, to afford 83.3 mg (23% yield) of the epoxide; colorless plates (methanol), mp 145–146°; 90% ee, determined by chiral HPLC analysis (Chiracel OD column), with hexane/2-propanol (9:1) as eluent (flow rate 0.6 mL/minute).

6.2.20. N-Benzyl-3,4-Epoxypyrrolidine [with TFD (isol.)] (63)

A 10-mL, two-necked, round-bottomed flask with gas-inlet and gas-outlet tubes and magnetic stirring bar was charged with a solution of *N*-benzyl-3-pyrroline (159 mg, 1.0 mmol) in Et₂O (2 mL). To this solution was added with stirring under argon 135 µL (1.05 mmol) of freshly distilled BF₃ · Et₂O at -70° . The mixture was stirred for 30 minutes under these conditions, and a white solid precipitated. The solvent was removed (-20° , 1 mmHg), to afford the BF₃ adduct of the amine quantitatively. ¹H-NMR analysis confirmed that all of the ether had been rigorously removed. ¹H NMR (300 MHz) δ 3.89 (d, J = 14 Hz, 2 H), 4.13 (s, 2 H), 4.26 (d, 2 H), 5.48 (s, 2 H), 7.30–7.60 (m, 5 H). ¹³C NMR (75 MHz) δ 59.9 (2 × t), 60.4 (2 × t), 124.7 (2 × d), 128.6 (2 × d), 129.4 (d), 131.7 (2 × d).

The BF₃ adduct was dissolved in dry CH₂Cl₂ (3 mL) at -70°, and the solution was added at this temperature with stirring to 1.9 mL of a 0.60 M solution (1.1 mmol) of TFD (isol.). The reaction mixture was allowed to warm to -20° and stirred for 30 minutes for complete consumption of the TFD, as confirmed by the negative peroxide test (KI/HOAc). The reaction mixture was poured into 100 mL of a 0.1 M aqueous KHCO3 solution at 20°, and extracted with tert-butyl methyl ether (2 × 50 mL). The combined organic phases were dried (MgSO₄) and concentrated (20°, 15 mmHg). The residue was purified by alumina (grade V) chromatography, first with hexane as eluent and subsequently with a 1:1 mixture of hexane and tert-butyl methyl ether to afford the pure epoxide (143 mg, 82% yield) as a colorless oil. IR (film): 3028, 2933, 2894, 2846, 2800, 1454, 1377, 1153, 844 cm⁻¹. ¹H NMR (200 MHz): δ 2.67 (d. J = 12 Hz, 2 H), 3.24 (d, J = 12 Hz, 1 H), 3.64 (s, 2 H), 3.80 (s, 2 H), 7.12–7.50 (m, 5 H). ¹³C NMR (50 MHz): δ 53.2(2 × t), 55.6 (2 × d), 59.8 (t), 127.3 (s), 128.3 (2 × d), 129.0 (2 × d), 137.2 (s). Anal. Calcd. for C₁₁H₁₃NO:C, 75.40, H, 7.48, N, 7.99. Found C, 75.43, H, 7.51, N, 8.06.

7. Tabular Survey

The epoxidation of alkenes by dioxiranes is presented in the appended tables. The literature survey was conducted by computer search of *Chemical Abstracts* (CAS-on-line), and the references cover work inclusive of the first quarter of 2000.

The tables are arranged in the order of the discussion in the section on Scope and Limitations. Thus, the data on epoxidation of simple alkenes, alkenes with electron donors, with electron acceptors, and with both electron donors and acceptors by isolated dioxiranes (mainly DMD) are presented in Tables IA–ID. Epoxidations with in situ generated achiral dioxiranes are shown in Table IE. Chemo- and regioselective epoxidations are collected in Tables II and III, while the diastereoselective epoxidations of chiral alkenes by isolated and in situ generated dioxiranes are shown in Table IV. Enantioselective reactions, for which the catalytic in situ method has been applied exclusively, are compiled in Table V.

The entries within each table are arranged in order of increasing carbon number of the alkene substrate. The carbon count is based on the total number of carbon atoms. In Table V, the structures of the chiral ketone catalysts are given in a separate column, left of the column on reaction conditions. Yields of products are given in parentheses, and a dash (—) indicates that no yield was reported in the original reference. If reported in the original reference, the data on conversion (% convn) are mentioned in the product column, preferentially in subtables. Ratios of different products or diastereomers are normalized to 100, and given without parentheses. In Table V, the enantiomeric excess (% ee) for the major isomer is listed in the product column without parentheses.

The following abbreviations are used in the tables:

Ac acetyl Bn benzyl CBZ benzyloxycarbonyl Ср cyclopentadienyl DMAP 4-(dimethylamino)pyridine DMD dimethyldioxirane DMD (in in sity generated dimethyldioxirane situ) DMD isolated dimethyldioxirane in acetone

(isol.)

DMD-d₆ isolated hexadeuterated dimethyldioxirane in acetone-d₆

(isol.)

DMF 1,2-dimethoxyethane
DMF dimethylformamide
DMM dimethoxymethane

EDTA ethylenediaminetetraacetic acid

Na₂EDTA disodium salt of ethylenediaminetetraacetic acid

ee enantiomeric excess

HMPA hexamethylphosphoric triamide

LDA lithium diisopropylamide

Ms methanesulfonyl (mesyl)

Oxone potassium monoperoxysulfate

TBS tert-butyldimethylsilyl

TDMPP dianion of 5,10,15,20-tetrakis(2,6-dimethoxyphenyl)porphyrin

C18 dianion of 5,10,15,20-tetrakis(3,5-dichloro-2,6-dimethoxyphenyl)porphyrrin

TDMPP

C116 dianion of

 $TDMPP \quad 2,3,7,8,12,13,17,18 - octachloro-5,10,15,20 - tetrakis (3,5 - dichloro-2,6 - dimethoxyphenyl) porphyrin$

Tf trifluoromethylsulfonyl (triflyl)

TFD (in in situ generated methyl(trifluormethyl)dioxirane

methyl(trifluoromethyl)dioxirane

situ)

TFD

TFD isolated methyl(trifluoromethyl)dioxirane in TFP

(isol.)

TFP 1,1,1-trifluoro-2-propanone

THF tetrahydrofuran
THP tetrahydropyranyl
TMS trimethylsilyl

Tr trityl (triphenylmethyl)

Ts p-toluenesulfonyl

Table 1A. Epoxidation of Unfunctionalized Olefins by Isolated Dioxiranes

	View PDF	
1C. Epox	idation of Olefins with Electron Acceptors Dioxiranes	s by Is
	View PDF	
•	ation of Olefins with Electron Donors and Isolated Dioxiranes	•
	View PDF	
	View PDF	
ole 1E. Ep	View PDF Discretely provide the provided state of the provided st	Dioxira
ole 1E. Ep		Dioxira

•	View PDF	
Tabl	le 4. Diastereoselective Epoxidations of Alkenes by Dioxirane	es
	View PDF	
Table	e 5. Enantioselective Epoxidation of Olefins by Enantiomerica Enriched Dioxiranes	ally

TABLE 1A. EPOXIDATION OF UNFUNCTIONALIZED OLEFINS BY ISOLATED DIOXIRANES

Substrate	Conditions	NALIZED OLEFINS BY ISOLATED DIOXIRANES Product(s) and Yield(s) (%) R	Refs.
C_2 R^2	Difluorodioxirane, CF ₄ , O ₂ , 77 K	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	169
C_{4-11} R^1 R^2 O_2H	DMD, acetone/CH ₂ Cl ₂	Me H Me	170
C		Me Me Me 20° 1 h (96) Me i-Pr H 20° 3 h (98) I-Bu H H 20° 0.5 h (98) Me I-Bu H 20° 1.5 h (>98) H 20° 3 h (>98)	
C ₅	DMD, acetone, under N_2 or air, -20 to 0° , 30 min	(>98)	18
R^4 R^2 R^2	DMD, acetone, 25°	R^{1} R^{2} R^{1} R^{2} R^{3} R^{4} k_{2} $(M^{-1}s^{-1})$	15
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C ₅₋₁₄ R ³ R ²	DMD, acetone, 23°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16

Substrate	Conditions	Product(s) and Yield(s) (%)
C ₆	1. DMD, acetone/Et ₂ O, N ₂ , -30° 225°, 3 h	(62)
\bigcirc	1. DMD, acetone, dark, rt, 8 h 2. NaBr or LiBr, Amberlyst 15, rt, 12 h	OH (85)
	1. DMD, acetone, dark, rt, 8 h 2. NaCl or LiCl, Amberlyst 15, rt, 12 h	CI (76)
	Cyclohexanone dioxirane, cyclohexanone, -20°, 10 min	O I(100)
	DMD, CDCl ₃ , minutes	I (—)
	DMD, acetone/solvent (v/v = 1:1), 25°	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{array}{lll} & & & Solvent & & k_2 (M^{-1}s^{-1}) \\ \hline C_6H_6 & & 0.488 \pm 0.002 \\ \hline CCl_4 & & 0.478 \pm 0.002 \\ \hline & & & 0.462 \pm 0.017 \\ \hline MeCOEt & & 0.416 \pm 0.007 \\ \hline MeOAc & & 0.387 \pm 0.016 \\ \hline EtOAc & & 0.349 \pm 0.005 \\ \hline \end{array}$
+ ()	DMD, acetone, 18°, 4 h	I (—)
\ <u></u>	DMD, acetone, rt. 1 h	> (−)
<u> </u>	DMD, acetone, rt, 2 h	(-)
^=v	DMD, acetone, rt, 2 h	(-)
\mathbb{R}^1 \mathbb{R}^2	DMD, acetone, 15 min	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
C ₇	DMD, acetone/CH ₂ Cl ₂ , 20°, 0.2 h	O (-)+ O (-)+ CHO (-)+

Substrate Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
A	DMD, acetone/CH ₂ Cl ₂ , 20°, 0.2 h	0 (>98)	14
C _{8.9}	Phenyl(trifluoromethyl)dioxirane, CH ₃ CN, 20°, 30 min	(—) R = H, 2-Cl, 4-Me, 4-MeO	179
C ₈	DMD (1.1 equiv), acetone, CH ₂ Cl ₂ , N ₂ , -10°, 3 h	O (70) + O I (30)	180
	DMD (2.5 equiv), acetone, CH ₂ Cl ₂ , N ₂ , 0°, 3 h	I (91)	180
	DMD, acetone/CH ₂ Cl ₂ , 20°, 0.2 h	O I (>98)	14
	DMD, acetone, rt, 20 min	I (97)	181
\bigcirc	DMD, acetone/CH ₂ Cl ₂ , 20°, 0.2 h	O (>98)	14, 13
Pr	Cyclohexanone dioxirane, cyclohexanone, -20°, 1 h	Pr I (100)	156
	DMD, acetone, rt, 3 h	I (74)	181
P_r P_r	Cyclohexanone dioxirane, cyclohexanone, -20°, 10 min	Pr Pr (100)	156
	DMD, acetone, rt, 1 h	I (81)	181
C ₅ H ₁₁	TFD, TFP, -20°, 1 min	C ₅ H ₁₁ (90)	155
C ₉	DMD	Ph I (>98) Solvent Temp Time % Convn	13
		acetone 20° 1.0 h 96 acetone/N ₂ 20° 0.6 h 88 acetone 56° 0.3 h 85 acetone -78° 12 h >95 acetone/CCl ₄ -20° 9 h >95 acetone/CBrCl ₃ 0° 12 h >95	
	DMD, acetone, under N ₂ or air,	I (—)	18
	-20 to 0°, 30 min	СНО	
	DMD, acetone	CHO (51) + I (35) + OH II (6) +	29
		OHC III (5)	
	DMD, acetone, 20°, N ₂ , 6 h	I (86) + II (6) + III (5)	30

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
Ph	DMD, acetone, rt, 1 h	Ph O I (98)	181
	TFD, TFP, -20°, 1 min	I (90)	155
Ph	DMD, acetone, 20°, N ₂ , 6 h	Ph (>98)	30
OEt	DMD, acetone, ~20°, 4.5 h	OEt (>95)	182
	DMD, acetone, Ni(acac) ₂ , ~20°	mixture	182
C ₁₀	DMD, acetone, 20°, 1 h	(100)	183
Ph	DMD, acetone, rt, 1 h	Ph (99)	181
	DMD (1.0 equiv), acetone, CH ₂ Cl ₂ , N ₂ , -10°, 3 h	O I (13) + O (72)	180
•	DMD (2.5 equiv), acetone, CH ₂ Cl ₂ , N ₂ , 0°, 3 h	I (85)	180
C ₁₀₋₁₅ R ² R ¹ R ³	DMD, acetone, π	MeO MeO H H 40 min (9) MeO MeO H Me 40 min (1) MeO MeO Me Me 40 min (1) H Cl H Ph 3 h (8) H NO ₂ H Ph 24 h (1)	184 (6) (6) (00) (7) (7) (9) (9)
O R ²	1. DMD (1 equiv), acetone, -78° 2. rt, 30 min 3. HCl (1 M), 25°, 10 min	H MeO H Ph 40 min (10) R1 R2 Me H (75) Me Me (86) n-Bu H (78) n-Bu n-Bu (84) n-CgH ₁₇ H (80)	185
CHO CHO	 DMD (3 equiv), acetone, -78° rt, 30 min HCl (1 M), rt, 10 min 	HO R1 (80) n-Bu (84) n-C ₈ H ₁₇ (83)	185
O ₂ H	DMD, acetone/CH ₂ Cl ₂ , N ₂ , 20°, 3 h	O_O_O_O_O_H (>98)	170

_	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₁₋₁₄	R ²	DMD, acetone/CH ₃ CN	R ² Temp (100) Cl H 0° H H 0° MeO H -40° MeO MeO -40° CF ₃ CH ₂ O MeO -40° EtO MeO -40°	186
CII	J.o	1. DMD, acetone, -78° 2. π, 30 min	(90)	185
	СНО	1. DMD (1 equiv), acetone, -78° 2. rt, 30 min 3. HCl (1 M), rt, 10 min	HO H (84)	185
		1. DMD (3 equiv), acetone, -78° 2. rt, 30 min 3. HCl (1 M), rt, 10 min	HO (80)	185
	O R	1. DMD, acetone, -78° 2. rt, 30 min 3. HCl (1 M), rt, 10 min	HO R MeO (85) MeS (85)	185
C ₁₂	Je	 DMD, acetone, -78° π, 30 min HCl (1 M), π, 10 min TsCl, pyridine, 25°, 24 h 	TsO (68)	185
C	淋	DMD, acetone/CH ₂ Cl ₂ , 0° to rt, Ar, 5 h	(97)	187
C ₁₃	Ph	DMD (1.0 equiv), acetone, CH ₂ Cl ₂ , N ₂ , -10° , 3 h	I (67) + OPh II (14)	180
		DMD (3.1 equiv), acetone, CH ₂ Cl ₂ , N ₂ , 0°, 4 h	I (0) + II (89)	180
C ₁₃₋₂₂	R R	DMD (-78°), acetone, -20° to 20°	R	188
C ₁₄	Ph Ph	DMD, acetone, rt, 40 min	Ph (100)	184
	Ph Ph	DMD, acetone, 22°, 2 h	Ph I (—)	162

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Cyclohexanone dioxirane, cyclohexanone/CH ₂ Cl ₂ , -20°, 4.5 h	I (97)	156
	DMD, acetone/solvents, 2°	I (—)	189
	DMD, acetone, rt, 8 h	I (99)	181
Ph	Ethylmethyldioxirane, 2-butanone/ acetone, rt, 3 h	Ph I (—)	162
	DMD, acetone, 22°	I ()	162
	Cyclohexanone dioxirane, cyclohexanone/acetone, -20°, 1.5 h	I (100)	156
	DMD, acetone, rt, 6 h	I (100)	181
	 DMD, acetone, dark, rt, 8 h NaBr or LiBr, Amberlyst 15, rt, 12 h 	OH Ph Ph (82)	171
C ₁₆	DMD, acetone, 0°, 2 h	0 0 (99)	190
C ₁₆₋₁₈	DMD, acetone, 0°	R Time H 2 h (100) Me 0.5 h (100) Ac 0.5 h (100)	190
O O ₂ H	DMD, acetone, 20°, 6 h	O ₂ H (96)	190
$\stackrel{C_{17}}{=}_{Ph}^{Ph}$	DMD, acetone, 20°, 3.5 h	Ph (100)	183
Ph Ph	DMD, acetone, 20°, 1 h	Ph (>95)	13
O SiMe ₂ Ph	1. DMD, acetone, 23° 2. HOAc, MeOH	OH (88)	191
O SiMe ₂ Ph	1. DMD, acetone, 23° 2. HOAc, MeOH	OH (83)	191

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₈	SiMe ₂ Ph OH	1. DMD, acetone, 23° 2. HOAc, MeOH	R OH R C ₆ H ₁₁ (95) n-C ₆ H ₁₃ (89)	191
	MOMO OTMS	DMD, acetone/CH ₂ Cl ₂ , -78°, 10 min	MOMO (70)	192
C ₁₉	MeO NHO	DMD, acetone, rt, 24 h	MeO	193
		DMD, acetone, rt, 2 d	MeO HO (21) + O HO (-)	70
C ₂₀	Ph Ph	K ₂ CO ₃ , DMD (0°), acetone, N ₂	Ph I Temp Time rt - (30)	194
		1. K ₂ CO ₃ , DMD, acetone, N ₂ , -20°, 60 min 2. H ₂ SO ₄ (2 M), -20° to rt, 60 min	O Ph Ph II (74)	194
		 K₂CO₃, DMD, acetone, N₂, -20°, 60 min H₂O, 0°, 14 h 	I (8) + II (53)	194
		1. DMD-d ₆ (-90°), acetone-d ₆ , -30°, 50 min 210°, 50 min	Ph $(-)$	194
	+ 8	1. DMD, acetone/CH ₂ Cl ₂ , 0° 2. π, 15 h	о т + п (14)	195
C ₂₀₋₂	R R	1. DMD, acetone/CH ₂ Cl ₂ , 0° 2. π, 15 h	R R R	195
C ₂₀	O OMe N O OMe	DMD, acetone, -60°, 3 h	O OMe N O O	196, 197

TABLE 1A. EPOXIDATION OF UNFUNCTIONALIZED OLEFINS BY ISOLATED DIOXIRANES (Continued)

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂₁	Tr =	DMD, acetone	Tr (82)	198
	Ph N Me	DMD, acetone/CH ₂ Cl ₂	(—) + PhCHO (—)	197
C ₂₂	SnBu ₃	DMD, CF ₃ CO ₂ H, dimethyl fumarate, CH ₂ Cl ₂ , rt, 2 h	O (78)	199
	BnO SiMe ₂ Ph	1. DMD, acetone, 23° 2. HOAc, MeOH	BnO OH (91)	191
C ₂₄	BnO SiMe ₂ Ph	1. DMD, acetone, 23° 2. HOAc, MeOH	BnO OAc (60)	191
C ₂₅		DMD, acetone/CH ₂ Cl ₂	(-) + CHO (-)	197
C ₃₄	OH OTBDPS PhMe ₂ Si OMe	1. DMD, acetone, K ₂ CO ₃ , 23° 2. MeOH, HOAc	OH OTBDPS (86)	200

TABLE 1B. EPOXIDATION OF OLEFINIC SUBSTRATES WITH ELECTRON DONORS BY ISOLATED DIOXIRANES

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₃	N=O Me N	DMD, acetone/CH ₂ Cl ₂ , N ₂ , dark, rt, 3 h	N=O (~100) Me ^{-N} O	201, 202
C ₄		DMD, acetone/CHCl ₃	(-)	203
		DMD, acetone	°√₀ (→)	51
	o	DMD	0 (-)	204
	N O	DMD, acetone/CH ₂ Cl ₂ , N ₂ , dark, rt, 3 h	N=0 N (95)	201
6	EtO	DMD	EtO (—)	204
C ₅	\bigcirc	DMD, acetone	O (-)	204, 51
C ₅₋₁	$ \begin{array}{ccc} R_1^1 & OP(O)(OR^4)_2 \\ R_2^3 & R_3 \end{array} $	DMD, acetone/CH ₂ Cl ₂ , N ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	205, 44
C ₆	+ SiMe ₃	DMD (1 equiv), acetone, rt, 10 min	SiMe ₃ O (87) + O + O + O + O + O H I II SiMe ₃ O + O H I III SiMe ₃ O IIIIIIIIIIII (13) I:II:III:IV = 38:23:8:31	74
-6	\bigcirc	DMD-d ₆ , -20°, 5 min	° (→)	204
	EtO EtO	DMD-d ₆ , –20°, 5 min	EtO (—)	204

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
R ² R ¹	DMD, acetone, 0°, 5 min	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	206. 207
7 D + 0	DMD, acetone, 25°	D I (-) + O II (-) $k_H/k_D = 0.773 \pm 0.02$	9 208
	DMD, acetone, -78°	I (—) + II (—) $k_{\text{H}}/k_{\text{D}} = 0.681 \pm 0.032$	208
D + 0	DMD, acetone, 25°	II (—) + O D O $M_H/k_D = 0.847 \pm 0.043$	208
	DMD, acetone, -78°	II (—) + III (—) $k_{\rm H}/k_{\rm D} = 0.898 \pm 0.036$	208
TMSO N=0	DMD, acetone/CH ₂ Cl ₂ , N ₂ , dark, rt, 3 h	N=0 N 0 (95)	201
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DMD, acetone, rt, 4 to 10 h	$ \begin{array}{c c} R^{1} & SiMe_{2}R^{4} \\ O & R^{3} \end{array} $	74
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
B OLi	DMD, acetone/THF, Ar, -78°, 30 min	O OH (77)	209
R ¹ OP(O)(OR) ₂	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -10 to 0°, 3 to 5 h	R ¹ (99-100) R ¹ R H Me OP(O)(OR) ₂ Me Et	44, 205
R ² R ¹³ R ⁴	DMD, acetone, ~20°, 30 min	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211
P-14 R ONa	DMD, acetone /THF, N ₂ , -78°, 2 min	R	210

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₉ OTMS		OTMS	44,
	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -40°, 3 h	O (99)	212, 45
TMS	10,51	TMS	75
N-TMS	DMD, acetone/CH ₂ Cl ₂ ,	N TMS (36)	64
IMS	-40°, 3.5 h	o TMS (50)	0.1
C ₁₀ OLi		0	
	DMD, acetone/THF, Ar, -78°,	OH (52-82)	209
	10 to 20 min		
V V		0	
	DMD, acetone/CH2Cl2, N2,	0 (~100)	213,
0	-70 to -30°, 0.5 to 1 h		204
Q		Q	
	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -40°	(~100)	214
,		·	
LiQ.		0 \ 0 \	
	DMD, acetone/THF, Ar, -78°, 15 to 30 min	HO I + II (50-74) I:II = 70:30	209
	13 to 30 mm	/ ~ но /	
\vee		Y Y	
A	DMD, acetone/THF, N2,	OH (53) + (18)	210
4	–78°, 45 min	У ОН	
OLi		0	
		$\stackrel{\wedge}{\sim}$	
O_N-CO ₂ Me	DMD, acetone/CH ₂ Cl ₂ , N ₂ ,	ON-CO ₂ Me	215
Bu-t	–20°, 2 h	Bu-t	
C ₁₁ ONa		o	
	DMD, acetone /THF, N ₂ ,	ОН (80)	210
	-78°, 2 min	OH (80)	210
1		1 ***	
~°~~			
	DMD, acetone, ~20°, 30 min	(98)	211
C ₁₁₋₁₆ OTRDMS		OTENNE	
OTBDMS	DVD / / 700	OTBDMS $R^{3} \qquad (-) \qquad \frac{R^{1}}{Et} \qquad \frac{R^{2}}{H} \qquad \frac{R^{3}}{Me}$	216
RI	DMD- d_6 , acetone- d_6 , -78°, 2 to 5 min	R^1 $\stackrel{\bigcirc}{\underset{\mathbf{p}_2}{\bigvee}} R^3$ $\stackrel{(-)}{\underset{-(CH_2)_4-}{\bigvee}} Et$ $\stackrel{H}{\underset{+}{\bigvee}} Me$	216
R²		R ²	
		H —(CH ₂)5—	
		—(CH ₂) ₄ — Me Ph H H	
C ₁₁₋₁₂		Ph Me Me	
OTMS		OTMS n	
OTMS	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -30°, 3 h	OTMS 1 (97) 2 (98)	213
() _n	-50 , or	() _n	
C ₁₂ OTMS		0 0	
	DMD, acetone/CH ₂ Cl ₂ , N ₂ ,	(72) + OH (28)	213
	-70 to -30°, 0.5 to 1 h	OTMS	
		STATE	

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		1. DMD, acetone/CH ₂ Cl ₂ , -70°, 10 min 240°, 10 min 3. 2-Methyl-2-butene, <0°, 5 min	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	217
	TMS N-TMS	DMD, acetone/CH ₂ Cl ₂ , -50°, 1 h	TMS N-TMS (90)	64
	TMS TMS Et	DMD, acetone, 25°, 5 h	TMS O TMS Et Et (100)	218
C ₁₃	OBz	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -20°, 3 h	OBz (96)	212, 44
	Ph	DMD, acetone/CH ₂ Cl ₂ , -70°, 75 min	Ph N (77)	64
	OTMS	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -78°, 30 min	OH (92) + OH (7)	210
	TBDMSQ_OMe Bu-r	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -40°, 1 h	O OMe (~100)	213
C ₁₄	Ph	DMD, acetone, rt, 30 min	Ph (100)	219
	O OH OBn	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -40°	O O O OBn (~100)	214
	TBDMSO Ph	DMD-d ₆ , acetone-d ₆ , -78°, 2 to 5 min	TBDMSO (—) + OOTBDMS (—) +	216
			Ph OH (—)	
	ОТМЅ	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -40°, 3 h	OTMS (98)	44, 45
C ₁₅	n-C ₈ H ₁₇ O C ₅ H ₁₁	DMD, acetone/CH ₂ Cl ₂ , 0°, 7 h	$n-C_8H_{17}$ $O_{C_5H_{11}}$ (94)	220
C ₁₆	Ph O	DMD, acetone, rt, < 30 sec	Ph 0 (97)	221
	Ph OAc	DMD, acetone/CH ₂ Cl ₂ , N ₂ , ~20°, 7 h	Ph OAc (84)	44, 222

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
MeO OMe Ph	MeO O O Ph	MeO O OMe ()	223
OMe OMe OMe	DMD, CH ₂ Cl ₂ /acetone, -40°, 30 min	MeO ₂ C OMe OMe (95)	224
MeO ₂ C OMeOMe OMe	DMD, CH ₂ Cl ₂ , -30°, 1 h	MeO ₂ C OMe OMe OMe	224
MeO CO ₂ Me OMe OMe	DMD, CH ₂ Cl ₂ , -30°, 1 h	MeO CO ₂ MeOMe (95)	224
C ₁₇	DMD, acetone/CH ₂ Cl ₂ , rt, 15 min	O H O O (-)	225, 51
I-BuO ₂ C N CO ₂ Me	DMD, acetone/CH ₂ Cl ₂ , 10°, 2 d	t-BuO ₂ C t -BuO ₂ C t -CO ₂ Me t -BuO ₂ C t -CO ₂ Me t -BuO ₂ C t -CO ₂ Me	226
n-C ₈ H ₁₇ OAc	DMD, acetone/CH ₂ Cl ₂ , 0°, 7 h	0 OAc OAc (97)	220
C ₁₈₋₂₄	TFD, TFP/CH ₂ Cl ₂ , -20°, 4 to 6 min	OR ² (92-97) R ¹ R ² Ph Me 1-Naph Me 2-Naph Me Ph Ph Ph Bn	227
Ph Ph	DMD (3 equiv), acetone/CH ₂ Cl ₂ , -70°	Ph $I + Ph$ O Ph $II + Ph$ O Ph $III + Ph$ O	(—) 228

_	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		DMD (1.5 equiv), acetone/CH ₂ Cl ₂ 70°	I + II + III () $I:II:III = 21:27:52$	228
C ₁₉	$MeO_2C(-)_7$ OH C_6H_{13} - n	DMD, acetone, rt	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69
C ₂₀	OSiEt ₃	DMD, acetone/CH ₂ Cl ₂ , 0°	OSiEt ₃ (>99)	229
	OMe N S	1. DMD, K ₂ CO ₃ , CH ₂ Cl ₂ /acetone, 0° 2. NaIO ₄ , H ₂ O/THF	OHC OME (92)	230
	Pr-i O-Si-Pr-i	DMD, acetone/CH ₂ Cl ₂ , 0°	$\begin{array}{c} Pr-i \\ O-Si-Pr-i \\ O \end{array} \qquad (-)$	231
	O OTBDMS OBn	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -40°	O OTBDMS (-94)	214
	TBDMSO OLi OMe	DMD, acetone/THF/HMPA, Ar, -78°, 30 min	TBDMSO O TBDMSO O O O O O O O O O O O O O O O O O O	209, 191
32			TBDMSO O (17)	
C ₂₁	OTMS H Pr-i	DMD, acetone/THF, -78°	HO H Pr-i (81)	54
	TBDMSQ SiMe ₂ Ph	1. DMD, acetone, 23° 2. HOAc, MeOH	TBSO OH (95)	191

TABLE 1	TABLE IC. EPOXIDATION OF OLEFINS WITH ELECTRON ACCEPTORS BY ISOLATED DIOXIRANES		
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂ CF ₂ =CFCl	Difluorodioxirane, CFCl ₃	F ₂ C-CFCI (>95)	232
CF₂=CHF	Difluorodioxirane, CFCl ₃	F ₂ C-CHF (>95)	232
CF ₃ CF=CF ₂	Difluorodioxirane, CFCl ₃	CF ₃ (F)C CF ₂ (>95)	232
C ₅₋₇ O O O O O O O O O O O O O O O O O O O	1. DMD, acetone, dark, rt, 8 h 2. NaBr or LiBr, Amberlyst 15, rt, 12 h	Br n R 1 H (95) 1 Me (96) 2 H (95) 2 Me (96)	171
	1. DMD, acetone, dark, rt, 8 h 2. NaCl or LiCl, Amberlyst 15, rt, 12 h	Cl n R 1 H (88) 1 Me (93) 2 H (90) 2 Me (92)	171
$C_{5.8}$ Q Q Q R^1 R^2	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -20°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44, 212

	Substrate	Conditions	ON ACCEPTORS BY ISOLATED DIOXIRANES (Continued) Product(s) and Yield(s) (%)	Refs.
C ₅₋₁₃ R ² H	3	DMD, acetone/CH ₂ Cl ₂ , ~20°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53
C ₆₋₇ O O O O O O O O O O O O O O O O O O O	R ¹	DMD, acetone/CH ₂ Cl ₂ /CH ₃ CN, porphyrin catalyst, imidazole, 20°	R ¹ R ² Catalyst	233
		DMD, acetone/CH ₂ Cl ₂ , 25°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	234, 235
		DMD, acetone/CH ₂ Cl ₂ , Na ₂ SO ₄ , 2	H H (10) (53) (25) Me H (35) (30) (8) H Me (37) (53) (0)	
		DMD, acetone/MeOH, 25°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	234, 235
C ₆₋₁₀	\mathbb{R}^3	DMD, acetone/CH ₂ Cl ₂ , additive, 25°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	235
R		79	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
C ₆		DMD, acetone, 30°	Deoxyribose H H H - (-) (-) (70) Deoxyribose H Me H - (10) (12) (33) O () $k_2 = (1.3 \pm 0.09) \times 10^{-3} \text{M}^{-1} \text{s}^{-1}$	236

Substrate	Conditions	Product(s) and Yield(s) (%)
	DMD, acetone, 30°	O () $k_2 = (5.7 \pm 0.9) \times 10^{-3} \text{ M}^{-1} \text{s}^{-1}$
C ₇	DMD, acetone, 20°, 6 d	(40)
CO ₂ Et OH	DMD, acetone, 20°, 3 d	O CO ₂ Et (37)
O O O O O O O O O O O O O O O O O O O	DMD, acetone/CH ₂ Cl ₂ , DMAP, 0° to rt	O O O O OBu-r (96)
N CO ₂ Et	DMD, acetone, 0° to rt, overnight	O (97)
C ₉	DMD, acetone/CH ₂ Cl ₂ , DMAP, 0° to rt	OH (80)
C ₉₋₁₀ NHCHO	1. DMD, acetone/CH ₂ Cl ₂ , -40° 2. (CF ₃ SO ₂) ₂ O, <i>i</i> -Pr ₂ NEt, -78°	NC NC II 23 R I II Br (41) (8)
C ₉ CO ₂ H	DMD, acetone, 30°	C1 (43) (7) CN (68) (0) Ph CO_2H () $k_2 = (0.66 \pm 0.07) \times 10^{-3} \text{ M}^{-1}\text{s}^{-1}$ 23
C ₉₋₁₈ O R ¹ R ² OH	DMD, CH ₂ Cl ₂ /acetone, 0 to 5°	$ \begin{array}{c} O \\ R^{3} \end{array} $ $ \begin{array}{c} O \\ R^{1} \end{array} $ $ \begin{array}{c} R^{1} \\ R^{2} \end{array} $ $ \begin{array}{c} O \\ R^{1} \end{array} $ $ \begin{array}{c} R^{1} \\ R^{2} \end{array} $ $ \begin{array}{c} O \\ R^{1} \end{array} $ $ \begin{array}{c} R^{1} \\ A^{2} \end{array} $ $ \begin{array}{c} O \\ R^{2} \end{array} $
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
R ¹ NH NH NO R ³ O	DMD, acetone/H ₂ O, 25°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	234
C, 0	Cyclohexanone dioxirane, cyclohexanone/CH ₂ Cl ₂ , -10°, 6 h	O (83)	156
$ \begin{array}{c} 0 \\ R^1 \end{array} $ $ \begin{array}{c} R^2 \end{array} $	DMD, acetone/CH ₂ Cl ₂ , N ₂ , 20°	R ¹ R ² Time H Me 20 h (86) Me H 24 h (90)	34, 53
OBu-f OSO ₂ Me	DMD, acetone/CH ₃ CN, NaOMe, 0°	OBu-t (85)	240
C ₁₀ C ₀ C ₀	DMD (large excess), acetone, heat	O (-) $CO_2Me (-) \qquad k_2 = (0.63 \pm 0.06) \times 10^{-3} (M^{-1}s^{-1})$	244
Ph	DMD, acetone, 30° DMD, acetone/CH ₂ Cl ₂ , N ₂ , 20°, 20 h	Ph CO_2Me (—) $k_2 = (0.63 \pm 0.06) \times 10^{-3} (M^{-1}s^{-1})$	236 34, 53
C ₁₁₋₁₄ CO ₂ Et	DMD, acetone, rt	O CO ₂ Et R H (71) CO ₂ Et CI (55) I Me (42) CF ₃ (43) i-Pr (52)	80
	DMD, acetone, 20.5°, 1.5 h	I (—) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80
	DMD, acetone, 25°, >30 h	<i>i</i> -Pr 0.316 R = H, I (63)	162

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
CF ₃ CO ₂ Me	DMD, acetone/CH ₂ Cl ₂ , 0°, 48 h	CF ₃ CO ₂ Me I (93)	78
	TFD, TFP/(CH ₂ Cl ₂), 0°, 30 min	I (93)	78
CO ₂ Me	DMD, acetone/CH ₂ Cl ₂ , 0°, 48 h	CO ₂ Me I (90)	78
	TFD, TFP/(CH ₂ Cl ₂), -70°, 2 h	I (90)	78
PhCO ₂ Et	DMD, acetone, rt, 24 h	Ph O (100)	181
V 5000 # 500	DMD, acetone/solvent (v/v = 1:1), 25°	Solvent $k_2 \times 10^4 (\text{M}^{-1} \text{s}^{-1})$ AcOH 29.66 ± 0.12 sulfolane 25.26 ± 0.26 CHCl ₃ 16.30 ± 0.30 CH ₂ Cl ₂ 14.66 ± 0.57 Cl(CH ₂) ₂ Cl 12.55 ± 0.52 PhCl 19.00 ± 0.23 C ₆ H ₆ 9.41 ± 0.10 acetone 8.66 ± 0.22 2-butanone 8.10 ± 0.14 CCl ₄ 7.98 ± 0.02 AcOMe 7.74 ± 0.04 AcOEt 6.81 ± 0.20	174
C ₁₂	DMD (3 equiv), acetone, rt, 27 h	O I () + O II () I:II = 20:80	24:
C ₁₃	DMD (4 equiv), acetone, rt, 47 h	II (90)	245
	DMD, acetone, 30°	O () $k_2 = (0.68 \pm 0.01) \times 10^{-3} (M^{-1} s^{-1})$	236
CI Bu-t	DMD, acetone, 30°	O O $Bu-f$ () $k_2 = (0.70 \pm 0.02) \times 10^{-3} (M^{-1})$	s ⁻¹ 236
(EtO) ₂ POEt) ₂	DMD, acetone, rt, 24 h	$(EtO)_{2} \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} P(OEt)_{2} $ (100)	76
C ₁₄ O Bu-t	DMD, acetone	O Bu-t I + O Bu-t II (52) I:II = 20:1	246
C ₁₅₋₁₇	DMD, acetone/CH ₂ Cl ₂ , N ₂ , ~20°	R ¹ R ² Time H Cl 110 h (100) OH H 128 h (100) MeO H 121 h (100)	57

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
R ² R ³	DMD, acetone/CH ₂ Cl ₂ , N ₂ , ~20°, 20 to 24 h	R^2 R^1 O	34, 53
C ₁₅₋₁₆		R1 R2 R3 H Br H (98) H H MeO H (99) H H NO2 (57) OH H Me (-100) OH H H MeO (-100) OH H MeO (-100) H H H (99) H Me MeO (99) H Me H (-100) H MeO MeO (96) H H MeO (99)	
R	DMD, acetone, 30°	R^{1} $\stackrel{O}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{C}{\longrightarrow}$ $\stackrel{C}{\longrightarrow}$ $\stackrel{C}{\longrightarrow}$	236
Cresc		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C ₁₅₋₁₆ R ³ R ⁵ R ¹ OH	DMD, acetone/CH ₂ Cl ₂ , N ₂	R ² OH O R ¹ R ² R ³ R ⁴ R ⁵ Temp Time Cl H H H H -20° 59 h H H H H H Cl -20° 57 h Cl H H H H MeO -5° 50 h H Me H H H -20° 30 h H MeO H H 0° 62 h H H H MeO H 0° 56 h Me H H H MeO 0° 37 h	(100) (100) (100) (100) (100)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
C_{15} O O Ph Ph	DMD, acetone/CH ₂ Cl ₂ , DMAP, 0° to rt	Ph HO OH (70)	240
C ₁₅₋₁₉ R ² OH	R ³ DMD, CH ₂ Cl ₂ /acetone, 0°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	241, 242
C ₁₅ O OH Ph	DMD, acetone/CH ₂ Cl ₂ . 0° to π, ~81.5 h	H H MeO H H OH —O(CH ₂) ₂ O— H MOMO —O(CH ₂) ₂ O— O II (20)	248
	1. DMD, acetone/MeCN, AcOH/NaOAc, 0° 2. rt, ~25 h	П (60)	248
R ¹ O OR ³	DMD, CH ₂ Cl ₂ , 25°	HO NH HO NH R ¹ O OR ³ R ² O OR ³ I II	234, 235
		R ¹ R ² R ³ I+II III Ac Ac Ac Ac (70) (11) Tr H H (57) (2) PhCO PhCO PhCO (65) (0) Tr H Tr (63) (0) III	8) 7))

Substrate	Conditions	Product(s) and Yield(s) (%)
	DMD, acetone/MeOH, 25°	$\mathbf{III} + \mathbf{R}^{1} \underbrace{OMeO}_{\mathbf{R}^{2} \mathbf{O} \mathbf{OR}^{3}}^{\mathbf{N} \mathbf{H}} + \mathbf{R}^{1} \underbrace{OMeO}_{\mathbf{R}^{2} \mathbf{O} \mathbf{OR}^{3}}^{\mathbf{N} \mathbf{H}} \underbrace{ON}_{\mathbf{R}^{2} \mathbf{O} \mathbf{OR}^{3}}^{\mathbf{N} \mathbf{O}} \underbrace{ON}_{\mathbf{R}^{3} \mathbf{N}}^{\mathbf{N} \mathbf{O}} \underbrace{ON}_{\mathbf{R}^{3} \mathbf{N}}^{\mathbf{N}} \underbrace{ON}_{\mathbf{R}^{3} \mathbf{N}}^{\mathbf{N}} \underbrace{ON}_{\mathbf{R}^{3} \mathbf{N}}^{\mathbf{N}$
C ₁₆₋₁₇ R	DMD, acetone/CH ₂ Cl ₂ , π	R Ac Ac Ac (11) (75) R R Time Br 168 h (76) Cl 168 h (72) F 120 h (83) 24 H 72 h (71) CN 168 h (77) Me 72 h (94) MeO 72 h (87)
C ₁₆₋₁₈	DMD, acetone/CH ₂ Cl ₂ , dark, rt	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Q GD	H + O O O O O
		IV V R
		R Time I III IV V Br 360 h (48) (29) (0) (0) (0) Cl 456 h (47) (30) (0) (0) (0) H 168 h (47) (21) (0) (0) (5) Me 144 h (51) (28) (0) (4) (0) MeO 144 h (38) (19) (5) (0) (7) EtO 168 h (41) (16) (0) (0) (8)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	DMD, acetone/CH ₂ Cl ₂ , π		251
C ₁₆₋₁₇ R		(9-10) R Time I II (9-10) Cl 192 h (56) (0) H 120 h (39) (0) Me 96 h (35) (5)	
	DMD, acetone/CH ₂ Cl ₂ , dark, rt		250
		R Time I II Cl 528 h (23) (43) H 288 h (36) (23) Me 192 h (42) (21) MeO 360 h (28) (19)	(0) (0) (0) (0) (4)
O R	TFD, TFP/CH ₂ Cl ₂ , 20°	R Time Cl 3 d (69) H 2.5 d (31) Me 3 d (14)	66
OH OMe	DMD, acetone/CH ₂ Cl ₂ , 0° to rt, 24 h	OH O (100)	248
	DMD, acetone/MeCN, AcOH/NaOAc, 0° to rt, 20 h	OH (62)	248
C ₁₆₋₁₇ Et Ph R CF ₃ CO ₂	DMD, acetone/CH ₂ Cl ₂ , 0°, 4 h or 1. TFD, -78° 220°, 30 min	Ph $\stackrel{\bullet}{N}_{R}$ CF ₃ CO ₂ $\stackrel{\bullet}{(-)}_{+}$ Ph $\stackrel{\bullet}{N}_{R}$ CF ₃ CO ₂ $\stackrel{\bullet}{(-)}$ R = H, Me, MeO	60a

Substrate	Conditions	Product(s) and	Yield(s) (%)	Refs.
CF3 CF3	CO ₂ Me DMD, acetone/(CH ₂ Cl ₂), -20°, 8 d	CF ₃	_CO ₂ Me I (93)	78
	TFD, TFP (CH ₂ Cl ₂), –20°, 1 h	I (94)		78
O R1	DMD, acetone/CH ₂ Cl ₂ , rt, dark	O O R1	R¹ Time Br 113 h (86) Cl 144 h (85) F 109 h (92) H 109 h (71) Me 74 h (81) MeO 113 h (—)	252
O Ac	DMD, acetone/CH ₂ Cl ₂ , rt, dark	O O O O O O O O O O O O O O O O O O O	R ¹ Time Br 121 h (87) Cl 144 h (87) F 109 h (89) NO ₂ 150 h (84) H 109 h (83) Me 89 h (85) MeO — (—)	252
C R	DMD, acetone/CH ₂ Cl ₂ , dark, rt	C R	R Time Br 72 h (89) Cl 72 h (81) F 48 h (79) H 48 h (79) CN 72 h (83) Me 48 h (85) MeO 48 h (85)	253
	DMD, acetone/CH ₂ Cl ₂ , dark, rt		R Time Cl 20 h (30) H 144 h (28) Me 120 h (23)	253
C ₁₈₋₁₉	DMD, acetone/CH ₂ Cl ₂ , rt	C R	R Time Br 216 h (73) Cl 192 h (79) F 192 h (79) H 168 h (83) CN 216 h (96) Me 168 h (90) MeO 120 h (78)	251

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
O H	DMD, acetone/CH ₂ Cl ₂ , rt	I + III	251
C ₁₉	DMD, CH ₂ Cl ₂ /acetone, ~20°, 20 h	Cl 336 h (61) (8) H 240 h (50) (0) Me 216 h (53) (7) (80) + 4β,5β-epoxide (15) + 4α,5α-epoxide (5)	
	DMD, CH ₂ Cl ₂ /acetone, ~20°, 28 h	$(81) + 4\alpha,5\alpha-\text{epoxide} (12) + 1\alpha,2\alpha-\text{epoxide} (6) + 1\beta,2\beta-\text{epoxide} (1)$	77
O H	DMD, acetone/CH ₂ Cl ₂ , rt	O H (72)	54
C ₂₀ OMe	1. DMD, acetone/CH ₂ Cl ₂ , 0° 2. NaHCO ₃	O HO OMe OMe (38)	254
C ₂₁ Ph	DMD, acetone, -30°, 10 min	Ph ()	256
OAc	1. DMD, acetone, dark, rt, 8 h 2. NaBr or LiBr, Amberlyst 15, rt, 12 h	OAc (97)	171
	1. DMD, acetone, dark, rt, 8 h 2. NaCl or LiCl, Amberlyst 15, rt, 12 h	(89)	171
HN-O HN-O OTBDMS	1. hv, toluene, <5° 2. DMD, 0 to 5°	NH OTBDMS (—)	257

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂₃	O OAc	DMD, acetone, 20°, 20 h	O O O O O O O O O O O O O O O O O O O	258
		DMD, acetone/CH ₂ Cl ₂ , ~20°, 20 h	I (80) + 4 β ,5 β -epoxide (16) + 4 α ,5 α -epoxide (4)	77
C ₂₇	OAc	DMD, acetone/CH ₂ Cl ₂ , ~20°, 24 h	OAc $(49) + 4\alpha,5\alpha-\text{epoxide } (11) + 1\alpha,2\alpha-\text{epoxide } (3)$ $(49) + 4\alpha,5\alpha-\text{epoxide } (17) + 1\beta,2\beta-\text{epoxide } (3)$	77
		DMD, acetone/CH ₂ Cl ₂ , ~20°, 24 h	(39)	77
		DMD, acetone/CH ₂ Cl ₂ , ~20°, 72 h	OH (40)	77
C ₂₉ O Ph	Ph Ph	DMD (large excess), acetone, heat	Ph Ph (-) O O	5
TrO	NH NO	DMD, acetone/CH ₂ Cl ₂ , 25°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	234
C ₂₉ .	R^3		HO NH HO N O (12) R ¹ R ³	
L	R^2	DMD, acetone/CH ₂ Cl ₂ , 20°, 48 h	R^1 R^2 R^3	259
			O-β-D-glucosyl-Ac4 H H () H O-β-D-glucosyl-Ac4 H () H H O-β-D-glucosyl-Ac4 H O-β-cellobiosyl-Ac7 H H () H O-β-cellobiosyl-Ac7 H H	(84) (88) (87) (78) (82) (81)

TABLE 1C. EPOXIDATION OF OLEFINS WITH ELECTRON ACCEPTORS BY ISOLATED DIOXIRANES (Continued)

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₅₁	$Bu_4\overset{\uparrow}{N} - O \overset{O}{\overset{\downarrow}{N}} = Du_4\overset{\downarrow}{N} = O \overset{\uparrow}{N}Bu_4$	DMD, acetone, rt, 4 d	$Bu_4N - O = 0$ $O = NBu_4 \qquad (100)$	76
C ₅₂	$Bu_4\overset{\uparrow}{N}-O\overset{O}{\overset{\downarrow}{N}}\overset{\downarrow}{\overset{\downarrow}{B}}u_4$	DMD, acetone, rt, 4 d	$Bu_4N - O \longrightarrow D O \longrightarrow D O \longrightarrow D O O O O O O O O O O O$	76

 $[^]a \, \text{TDMPP} = 5,10,15,20 \text{-tetrakis} (2,6 \text{-dimethoxyphenyl}) porphyrin \, \text{dianion}$

 $[\]label{eq:control_bound} {}^b(\text{Cl16})\text{TDMPP} = 2,3,7,8,12,13,17,18-\text{octachloro-5},10,15,20-\text{tetrakis}(2,6-\text{dimethoxy-3},5-\text{dichlorophenyl})\text{porphyrin dianion}$

TABLE 1D. EPOXIDATION OF OLEFINS WITH ELECTRON DONORS AND ACCEPTORS BY ISOLATED DIOXIRANES

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
C ₆		DMD, acetone/CH ₂ Cl ₂ , N ₂ , 0°, 23 h	0 (~100)	56
C ₁		DMD, acetone/CH ₂ Cl ₂ , N ₂ , -20°, 3 h	0 (79)	44, 212
C ₇₋₁₃ NHCHO		1. DMD, acetone/CH ₂ Cl ₂ , -40° 2. (CF ₃ SO ₂) ₂ O, <i>i</i> -Pr ₂ NEt, -78°	NC NC R I II	238
C ₇		DMD, acetone, 0° to rt, overnight	O N (97) CO ₂ Et	239
c, 0 0		DMD, acetone/CH ₂ Cl ₂ , N ₂ , -20°, 3 h	0 (83)	44, 212
\Rightarrow	=0	DMD, acetone, -78° to rt	0 (97)	243
		 Moist DMD, acetone, -78° to rt, 18 h Acetone, CuSO₄, H₂SO₄, 50°, 3 d 	0 0 0 0 (17)	243

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₉ EtO	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -20°, 11.5 h	O (~100)	56
C ₁₀ OEt	DMD, acetone/CH ₂ Cl ₂ , N ₂ , 0°, 11 h	OH (99)	56
C ₁₀₋₁₄ O R ¹ OR ²	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -20°	O R ¹ R ² Time H Et 26 h (98) O Me Et 17 h (~100) H n-Bu 11 h (99) H Ph 24 h (97)	56
EtO ₂ C OP(O)(OEt) ₂	DMD, acetone/CH ₂ Cl ₂ , N ₂ , 20°, 48 h	EtO_2C $OP(O)(OEt)_2$ (98)	205
Ph HN	DMD-d ₆ , acetone-d ₆ , -50°	$ \begin{array}{ccc} Ph & H & \\ & &$	167
	1. DMD, acetone/CH ₂ Cl ₂ , -78°, 3 h 220°, 24 h	PhCONH O NHCOPh (79)	167
Ph H	DMD- d_6 , acetone- d_6 , -50°	Ph H (100)	167
Ph N	DMD, acetone/MeOH, -78°, 2 h	Ph OMe (40)	167
C ₁₁ MeO ₂ C		MeO ₂ C	
	DMD, acetone/CH ₂ Cl ₂ , N ₂ , 20°, 12 h	(93)	45
OP(O)(OEt) ₂	DMD, acetone/CH ₂ Cl ₂ , N ₂ , 20°, 91 h	O OP(O)(OEt) ₂	205
C ₁₃ NHCHO	1. DMD, acetone/CH ₂ Cl ₂ , – 2. (CF ₃ SO ₂) ₂ O, <i>i</i> -Pr ₂ NEt, –	140° (30) + NC (8)	238
OBz	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -20°, 3 h	OBz (96)	44, 212
C ₁₅₋₂₁ R Ph	DMD, acetone/CH ₂ Cl ₂ , N ₂ , ~20°	R Time H 6 h (~100) Ph 88 h (~100)	212, 44

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₅₋₁₇ R ² R ³ O R ⁴ R ⁵	DMD, acetone/CH ₂ Cl ₂ , N ₂	R ³ O R ⁴ R ¹ R ² R ³ R ⁴ R ⁵ Temp Time H H H H CI H -20° 28 h (-100) H H H H H NO ₂ -20° 72 h (-100) H H H H H CI H -20° 37 h (-100) H Me H H CI H -20° 37 h (-100) H Me H H H H O° 41 h (-100) H Me H H H O° 23 h (-100) H H H H H MEO O° 24 h (-100) H H H H H H MeO O° 26 h (-100) H MeO H H H H -10° 48 h (-100) MEO H H H H H -10° 46 h (-100)	59, 58
C ₁₅ OH	1. DMD, acetone/CH ₂ Cl ₂ , Ar, 0°, 2.3 h	H Me H H Me -10° 34 h (-100) H Me H H MeO 0° 23 h (~100)	248
CF ₃ O OH N CN	 π, ~25 h DMD, acetone/CH₂Cl₂, N₂, π, 24 h 	CF ₃ O O (80)	260
C ₁₅ EtO ₂ C Ph NEt ₂	DMD, acetone/CH ₂ Cl ₂ , -70°	EtO ₂ C HO NEt ₂ Ph + EtO ₂ C Ph + D I I II II III II III III	228
	1. DMD, acetone/CH ₂ Cl ₂ , -70° 2. ¹⁸ O ₂	Ph NEt ₂ + Ph NHEt + Ph OH (—)	228
C ₁₆ 0	DMD, acetone/CH ₂ Cl ₂ , 0°	II (57) + ONEt ₂ (13)	228
\mathbb{R}^{1}	DMD, acetone/CH ₂ Cl ₂ , N ₂	R ¹ R ² Temp Time H MeO -5° 11 h (100) R ² MeO H 0° 22 h (100)	57
MeQ Ph	DMD, acetone/CHCl ₃ , rt, 34 h	MeO Ph (83)	248
MeQ H	1. DMD, acetone/CH ₂ Cl ₂ , 0°, 1 h 2. rt, 36 h	MeO O O H Ph (33)	248
Ph OAc Ph	DMD, acetone/CH ₂ Cl ₂ , N ₂ , ~20°, 7 h	Ph O OAc (84)	44, 45

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₇₋₂₂	R^{1} R^{2} R^{3}	DMD, acetone/CH ₂ Cl ₂ , ~20°, ~15 d	R ¹ R ² R ³ MeO H Me (38) Ms H Me (23) MeO H Et (38) MeO MeO Me (14) Ms H Et (27) MeO MeO MeO Et (17) MeO H Ph (16) MeO MeO MeO Ph (19)	
C ₁₇	MeO Ph	1. DMD, acetone/CH ₂ Cl ₂ , Ar, 0°, 2.3 h 2. rt, ~25 h	MeO OH O Ph (33)	248
C ₂₀	Ac Ph	DMD, acetone, 0°, 6 h	Ac Ph O (94) Ac	255
C ₂₃	OTBS	DMD, acetone/CH ₂ Cl ₂ , -78°, 30 min	O (>85%)	243
C ₂₄	Ac Ph	DMD, acetone, 0°, 48 h	Ac Ph (-)	255
C ₂₅₋	R^2 O R^3	DMD, acetone/CH ₂ Cl ₂ , 20°	R ¹ R ² R ³ Time R ¹ R ² R ³ Time Popular Popular))
C ₂₇₋₄₄	BnQ OR2	1. DMD, acetone, 0°, 5 to 7 h 2. TsOH, CH ₂ Cl ₂ , 0°, 10 to 15 min	BnO O O O R1 R2 H Me (71) H Me (71) H Bn (67) MeO Bn (56) BnO Me (74) BnO Bn (70)	
C ₂₉	MOMO H CO ₂ Me	DMD, acetone/CH ₂ Cl ₂ , -40°, overnight	MOMO OC H OTBDMS OCO ₂ Me	262

TABLE 1E. EPOXIDATION OF OLEFINS BY IN-SITU-GENERATED DIOXIRANES

Substrate	Conditions		Produc	t(s) and Y	ield(s)	(%)			Ref
R^1 R^2 CO_2H	Acetone, Oxone [®] , NaHCO ₃ , H ₂ O, EDTA, 24° to 27°	R^1 R^2 CO_2H		Me	Н 2	Time 2.75 h 2.0 h	(62) (92)		26
						2.5 h 2.25 h	(92) (90)		
$^{C_{5-20}}$ R^2 R^3	TFP, Oxone®, NaHCO ₃ ,	R ² O R ³	R ¹	R ²	R ³	R ⁴	Time		
>=<	CH ₃ CN/H ₂ O, Na ₂ EDTA,	X-X	Me	AcO	H	Н	20 min	(97)	35
R ¹ R ⁴	0 to 1°		Me	Ph	H	H	15 min		
				C ₆ H ₄ H	HO ₂ C		2 h		
			Ph	н	MeO		2 h		
			Ph	н	H		30 min		
			Ph	Н	PhCC	Н	1.3 h	(99)	
	Ketone, Oxone [®] , NaHCO ₃ ,	I							38
	CH ₃ CN/H ₂ O, EDTA, rt	24	- 1						
	Q	R ¹	R ²	R ³	R ⁴		Tim		
	Ketone = TfO-	Me		H ₂) ₄ —	H			h (85	
	Ph N Ph	Ph	Н	Н	Н		7 h		
	Mé Me	n-C ₆ H ₁₃	н	Н	H		8 h		
		n-C ₅ H ₁₁ Ph	H H	Me Me	H		8 h		201
		Ph	н	CH ₂ OH			3 h 0.5	12.0	
		(CH ₂) ₈ CH ₂ OH		H	н		2.5		
		Ph	н	Ph	н		1.5		516
		Ph	н	н	Ph		3 h		
		Ph	Me	Ph	н		2.5		
		n-C ₈ H ₁₇	Н	н		7CO ₂ N			
		Ph	Ph	Ph	H	,,		h (96	

Substrate	Conditions	Product(s) and Yield(s) (%)							Refs.
	Ketone, Oxone®, NaHCO ₃ ,	I							38
	CH3CN/H2O, EDTA, rt	R ¹	R ²	\mathbb{R}^3	R ⁴		Time		
	0	Ме	—(CH ₂		н	-AFFA	0.5 h		
	Ĭ.	Ph	Н	H	Н		4.5 h	(80)	
	Ketone =	n-C ₆ H ₁₃	Н	Н	н		2.5 h		
	o'S'o	$n-C_5H_{11}$	Н	Me	Н		1.5 h		
		Ph	н	Me	Н		4.5 h		
		Ph (CH ₂) ₉ OH	H H	CH ₂ C	н Н		1.5 h 3.5 h		
		Ph	н	Ph	н		5.5 h	(95)	
		Ph	н	Н	Ph		4 h	(95)	
		Ph	Me	Ph	Н		4 h	(97)	
		n-C ₈ H ₁₇	н	н	(CH ₂) ₇ C0	O ₂ Me	3 h	(96)	
		Ph	Ph	Ph	н		6 h	(97)	
	Ketone, Oxone®, CH3CN/buffer,	I	1941 P	2 (3)					37
	(pH 7.0), 0°						Time		
	Me Me		1-C ₆ H ₁₃ H					(74)	
	N 2 TfO		Ph H Ph H			H		(83)	
	Ketone = \bigcirc + \bigcirc O•H ₂ O		Ph H Ph H			Me H		(78) (94)	
	Mé Me			-(CH ₂)		Н		(93)	
			Me H		CH ₂) ₃ OBn			(89)	
			Ph H				22 h		
C ₆	Acetone, Oxone [®] , phosphate buffer (pH 7.65)/CH ₂ Cl ₂ , 18-crown-6, EDTA, 5 to 8°, 16 h	o (70	I- 9 0)						42
СО₂H	Acetone, Oxone [®] , H ₂ O (pH 7.0-7.5), 18-crown-6, 2 to 8°, 2.0 h	\$	CO ₂ H	(7	7)				32
	Acetone, Oxone [®] , benzene/H ₂ O, (pH 7.0-7.5), Bu ₄ NHSO ₄ , 2 to 8°, 3.0 h	\bigcirc	I (72)						32
	Acetone, Oxone [®] , CH ₂ Cl ₂ /H ₂ O, (pH 7.0-7.5), Bu ₄ NHSO ₄ , 2 to 8°, 4.0 h	I (78)							32
	Acetone, Oxone [®] , benzene/H ₂ O, (pH 7.0-7.5), Bu ₄ NHSO ₄ , 2 to 8°, 4.0 h	I (32)							32
	Acetone, NaHCO ₃ , CH ₂ Cl ₂ /H ₂ O, NaHSO ₅ , 0° to 5°, N ₂ , 2 h	I (95)							265
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, π, 24 h	ľ	Ketone C ₆ H ₅ CC 4-CF ₃ CC 4-CF ₃ CC	OC ₆ H ₄ 0	(38) CO ₂ H (5) CO ₂ Me (0)				266
	Acetone, Oxone [®] , H ₂ O (pH 7.0-7.5), 18-crown-6, 2 to 8°, 2.0 h		(96))					32

	S	ubstrate Conditions		P	Product(s) and Yie	eld(s) (%)			Refs
C ₆₋₁₈ R	$\stackrel{\stackrel{2}{\rightleftharpoons}}{\stackrel{R^3}{\rightleftharpoons}}$	Acetone, Oxone [®] , CH ₃ CN, DMM, K ₂ CO ₃ buffer, Bu ₄ NHSO ₄ , EDTA	$R^2 O R^3$						36
			R^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	Time		
			п-Рт	Н	CH ₂ OH	Н	2 h	(79)	
			Et	н	(CH ₂) ₂ OH	н	2 h	(80)	
			Et	н	Н	(CH ₂) ₂ OH		(90)	
			Ph	н	CH ₂ Cl	Н	2 h	(72)	
			Ph	н	CH ₂ OH	н	2 h	(67)	
			Ph	Me	H	н	4 h	(91)	
			Ph	Н	Me	н	4 h	(84)	
							1.5 h	(88)	
			Н	—(CH ₂		C≡CMe			
			n-C ₈ H ₁₇	Н	н	Н	4 h	(67)	
			2-MeC ₆ H ₄	Н	Ме	Me	4 h	(75)	
			Н	—(CH		Ph	2 h	(84)	
			i-Pr ₃ SiCH ₂		Н	Н	4 h	(77)	
			Bn	н	(CH ₂) ₂ CO ₂ Me		2 h	(85)	
			Ph	Н	Ph	H	4 h	(86)	
			n-C ₆ H ₁₃	Н	n-C ₆ H ₁₃	Н	1.5 h	(92)	
			Ph	Me	Ph	H	2 h	(98)	
			Ph	H	CH ₂ OTBDMS	H	2 h	(77)	
			Н	Ph	n-C ₁₀ H ₂₁	Н	4 h	(72)	
1	D	Acetone, Oxone [®] , H ₂ O (pH 7.5 CH ₂ Cl ₂ , 18-crown-6, 0 to 5°	-8.0)/	>0 I (95)				162
		2-Butanone, Oxone [®] , NaHCO ₃ , 20 to 30 min	I (68)						26
		2-Butanone, Oxone [®] , iron(III) tetrakis(2,6-dichlorophenyl)- porphyrin chloride [(TDCPP)FeC1], NaHCO ₃ , 20 to 30 min	I (68)						267
		2-Butanone, Oxone [®] , NaHCO ₃ 0°, 24 h, with prior incubation							267
		2-Butanone, Oxone [®] , NaHCO: (TDCPP)FeCl, 0°, 24 h, with prior incubation							26
-	\sim	Acetone, Oxone [®] , K ₂ CO ₃ , CH ₃ CN/DMM, Bu ₄ NHSO ₄ , EDTA, rt, 4 h			(50)				36
Į.	~ 0-								

	Substrate	XIDATION OF OLEFINS BY IN-SI Conditions			t(s) and Yield(s) (9			Refs.
C ₈₋₂₀	$R^2 \longrightarrow R^3$	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt	R ² O R ³					39
	R*	Ketone =		_ 1		1		
		Retolie =	R ¹ 4-ClC ₆ H ₄	R ²	R ³	Time 1 h	(80)	
			Me	Ph	Н	1 h	(75)	
		0 >=0	Ph	н	CH ₂ OH	2.5 h	(92)	
			4-CF ₃ C ₆ H ₄	н	CO ₂ H	2 h	(85)	
		~ °	Ph	Н	CO ₂ Me	2 h	(96)	
			(CH ₂) ₉ OH	н	н	5 h	(94)	
			Ph	—(CH	12)4—	2 h	(86)	
			Ph	Н	Ph	80 min	(94)	
			Ph	H	PhCO	1 h	(96)	
			n-C ₈ H ₁₇	H	(CH ₂) ₇ CO ₂ Me	5.5 h	(96)	
e			Ph	Ph	Ph	160 min	(91)	
C ₈	Ph	Acetone, NaHCO ₃ , CH ₂ Cl ₂ /H ₂ O, NaHSO ₅ , 0° to 5°, N ₂ , 2 h	Ph 0 (70	0)				265
		Acetone, NaHCO ₃ , CH ₂ Cl ₂ /H ₂ O, NaHSO ₅ , 0° to 5°, N ₂ , 2 h	\bigcirc	I (7))			265
		Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 1.5 h Ketone = TfO- Ph N Ph Mé Me	I (95)					38
		Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, π, 0.5 h Ketone =	I (96)					38
	~~~	Acetone, NaHCO ₃ , CH ₂ Cl ₂ /H ₂ O, NaHSO ₅ , 0 to 5°, N ₂ , 2 h	%	~	(54)			265
C9	PhCO ₂ -	Ketone, Oxone®, solvent, buffer	Ph O CO2-	(—)				269
		Ketone, Oxone [®] , CH ₃ CN/buffer (pH 7.0), 0°, 6 h Me Me Ketone = $\begin{pmatrix} N & 2 \text{ TfO}^-\\ N & \text{Me} \end{pmatrix}$ Me Me	CT'	I (85)				37
		Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, 0°, 8 h	I (92)					40
		Ketone = N O O						

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
PhCO ₂ H	Acetone, Oxone [®] , phosphate buffer, (pH 7.5), 2°, 2 h	Ph O I (95)	207
	Acetone, Oxone [®] , H ₂ O (pH 7.0-7.5), 18-crown-6, 2 to 8°, 2.3 h	I (94)	32
	Acetone, Oxone [®] , benzene/H ₂ O (pH 7.0-7.5), Bu ₄ NHSO ₄ , 2 to 8°, 3 h	I (90)	32
Ph CO₂H	Acetone, Oxone [®] , phosphate buffer (pH 7.0), 2°, 3.5 h	Ph CO ₂ H [(90)	31
	Acetone, Oxone [®] , H ₂ O (pH 7.0-7.5), 18-crown-6, 2 to 8°, 3.5 h	I (>81)	32
Ph Me	Acetophenone, Oxone [®] , MeOH, H ₂ O, 0°, 1 h	Ph O (100) Me	270
PH	Ketone, Oxone [®] , NaHCO ₃ , $CH_3CN/H_2O, 0^{\circ}, 8 \text{ h}$ $Ketone = \bigcup_{Me} \bigvee_{N=0}^{Me} O$	Ph (92)	40
	Ketone, Oxone [®] , NaHCO ₃ , $CH_3CN/H_2O, 0^{\circ}, 8 \text{ h}$ $Ketone = \begin{bmatrix} & & & & & & & & & & & & \\ & & & & & &$	Ph (92)	40
	Ketone, (TMS) ₂ SO ₅ CH ₂ Cl ₂	Ph Ketone Temp Time % Convn acetone -4° 1.0 h 98 (95) acetone -32° 3.0 h 68 (95) cyclohexanone -32° 3.0 h 88 (97)	268
	p-O ₂ NC ₆ H ₄ SO ₂ N , [¹⁸ O]acetone, H ₂ O ₂ , NaOH	(38 - 43)	271
РН ОН	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, 0°, 8 h	Ph OH (90)	40
	$Ketone = \begin{matrix} O & N & O \\ N & O & O \\ Me & O & O \end{matrix}$		
	Acetone, Oxone [®] , K ₂ CO ₃ , CH ₃ CN/DMM, Bu ₄ NHSO ₄ , EDTA, rt, 1.5 h	0 (88)	36

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Acetone, Oxone [®] , phosphate buffer (pH 7.65)/CH ₂ Cl ₂ , 18-crown-6, EDTA, 5 to 8°, 16 h	O (70-90)	42
	TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, Na ₂ EDTA, 0 to 1°, 1.5 h	O I (90)	35
	2-Butanone, Oxone [®] , phosphate buffer (pH 7.3-7.5), ~20°, 24 h	I (86)	34
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 1.5 h Ketone =	I (89)	39
	2-Butanone, Oxone [®] , phosphate buffer (pH 7.3-7.5), ~20°, 24 h	(84)	34
$ \begin{array}{c} R^2 \\ R^1 \end{array} $ $ \begin{array}{c} P(O)(OEt)_2 \\ R^3 \end{array} $	2-Butanone, Oxone [®] , CH ₂ Cl ₂ /phosphate buffer (pH 7.3-7.5), Bu ₄ NHSO ₄ , aq. KOH, 24 h	R ¹ R ³ H n-Bu H (7) Me n-Pr H (7) Me n-Pr Me (7) H Ph H (7) Ph n-Pr H (8) Ph n-Bu H (8) n-Bu Ph H (3) n-Bu Ph Me (2) 4-MeC ₆ H ₄ Ph H (8)	58) 272 (1) (55) (99) (33) (31) (30) (44) (99)
C10 0	Ketone, Oxone [®] , NaHCO ₃ , $CH_3CN/H_2O, EDTA, rt, 6 h$ $Ketone = $	(88)	39
	Acetone, Oxone [®] , K ₂ CO ₃ , CH ₃ CN/DMM, Bu ₄ NHSO ₄ , EDTA, rt, 4 h	O I (66)	36

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 1.5 h O Ketone = PH N Ph TfO- Mé Me	I (83)	38
	Ketone, Oxone [®] , NaHCO ₃ , CH_3CN/H_2O , EDTA, rt, 2.5 h O Ketone = O	I (85)	38
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 80 min Ketone =	I (81)	39
РЬ	Ketone, Oxone [®] , NaHCO ₃ , $CH_3CN/H_2O, 0^{\circ}, 8 \text{ h}$ $Ketone = \begin{cases} O & N \\ N & O \\ N & O \end{cases}$	Ph OH (84)	40
ОН	Ketone, Oxone [®] , CH ₃ CN/buffer (pH 7.0), 0°, 6 h Me Me 2 TfO Ketone = $\begin{pmatrix} V & 2 & TfO \\ V & V & V \\ V & V & V \end{pmatrix}$ Me Me	OH I (90)	37
	Ketone, Oxone [®] , CH ₃ CN/buffer, (pH 7.0), 0°, 2.4 h Me Me X 2 TfO ⁻ Ketone = $\begin{pmatrix} N & 2 \text{ TfO}^- \\ N & Me \end{pmatrix}$ Me Me	I + OOH II (89) I:II = 19:77	37
C ₁₂ Ph	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, 0°, 3 h O Ketone = N TfO- Me Me	O I (90)	273
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, 0°, 8 h Me N Ketone = Me N O	I (88)	40

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Acetone, Oxone [®] , K ₂ CO ₃ , CH ₃ CN/DMM, Bu ₄ NHSO ₄ , EDTA, rt, 2 h	I (84)	36
MeO	1. Acetone, Oxone [®] , H ₂ O, NaHCO ₃ , 20°, 2.5 h 2. 25°, 2 h	MeO (85)	274
AcO OAc	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, π	AcO O O Ketone Time Tentagel S-Br 48 h (80) C ₆ H ₅ COCF ₃ 24 h (100) 4-CF ₃ COC ₆ H ₄ CO ₂ H 24 h (100) 4-CF ₃ COC ₆ H ₄ CO ₂ Me 24 h (100)	266
O _{OMe}	Acetone, Oxone [®] , phosphate buffe (pH 7.2), 0°	or N (77)	275
	Acetone, Oxone [®] , benzene/H ₂ O, (pH 7.0-7.5), 18-crown-6, 2 to 8°, 3.0 h	(77)	32
////////	Acetone, Oxone [®] , benzene/H ₂ O, (pH 7.0-7.5), 18-crown-6, 2 to 8°, 3.0 h	0 (43)	32
OTBDMS	1. TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, Na ₂ EDTA, 0 to 1°, 30 min 2. NaSH, rt, 2 h	OH (97)	35
C ₁₃	Acetone, Oxone [®] , phosphate buff (pH 7.65)/CH ₂ Cl ₂ , 18-crown-6, EDTA, 5 to 8°, 16 h	1/ 1/	42
OBn	Acetone, Oxone [®] , H ₂ O/CH ₂ Cl ₂ , (pH 7.8), Bu ₄ NHSO ₄ , 0°, 24 h	O _{OBn} I (87)	168
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, 0°, 8 h	I (70)	40
	$Ketone = \underbrace{\begin{matrix} Me \\ N \\ Ne \end{matrix} \begin{matrix} N \\ O \end{matrix} \begin{matrix} O \end{matrix}}_{O}$		
	Oxone [®] , various ketones, CH ₂ Cl ₂ /H ₂ O, Bu ₄ NHSO ₄ , 9 to 24 h	I ()	107

	Substrate	Conditions		Product(s) and Yield(s) (%)	Ref
Ph	Ph	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, 0°, 8 h Me N Ketone = Me N O	Ph Ph	I (70)	40
		Ketone, Oxone [®] , NaHCO ₃ , $CH_3CN/H_2O, 0^\circ, 8 \text{ h}$ $Ketone = \begin{bmatrix} Bn & O \\ O & N \\ O & Bn \end{bmatrix}$	I (70)		40
		Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, π	Ī	Ketone Time Tentagel S-Br 48 h (97) Hydroxymethyl resin 17 h (41) Hydroxymethyl resin 36 h (64) C ₆ H ₅ COCF ₃ 24 h (70) 4-CF ₃ COC ₆ H ₄ CO ₂ H 24 h (81) 4-CF ₃ COC ₆ H ₄ CO ₂ Me 24 h (91)	260
		Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, π, 5 min O Ketone = TfO- Me Me	I (—)		38
		Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 45 min Ketone = TfO- Mé Ph	I (95)		38
		Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 2 h O Ketone = Ph N Ph Mé Me	I (92)		38
		Ketone, Oxone®, NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 2 h O Ketone = Ph N Ph Me Me	I (87)		38

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Ketone, Oxone®, NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 15 min Ketone = PH N Ph Me Me	I (94)	38
	Cyclohexanone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 12 h	I ()	38
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 30 min Ketone =	I (93)	38
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 2 to 3 min Ketone =	I (97)	38
	TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 30 min	I (96)	39
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 120 min Ketone = ACO	I (91)	39
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 50 min ACO Ketone = ACO	I (90)	39
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 35 min O Ketone = AcO O O	I (98)	39

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 20 min Ketone =	I (96)	39
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 12 min O Ketone = \bigcirc O O O	I (97)	39
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 10 min Ketone =	I (96)	39
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 10 min Ketone =	I (91) =0	39
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 6 min $CO_{2N} = O_{2N} = O_{2N}$	I (93)	39
	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 45 min Ketone =	Ph (—) O ¹⁸	112

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
Ph Ph	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, π	Ph Ph February Retone Time Tentagel S-Br 48 h (61) Hydroxymethyl resin 38 h (51) C ₆ H ₅ COCF ₃ 24 h (100) 4-CF ₃ COC ₆ H ₄ CO ₂ H 24 h (100) 4-CF ₃ COC ₆ H ₄ CO ₂ Me 24 h (97)	266
C ₁₅ O Ph	TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, Na ₂ EDTA, 0 to 1°, 1.25 h	O (99)	35
C ₁₅₋₁₆	2-Butanone, Oxone [®] , phosphate buffer (pH 7.3-7.5), ~20°, 24 h	R ¹ R ² H Br (40) I H H (93) Me H (98) H MeO (94) MeO H (93)	34
	2-Butanone, Oxone [®] , phosphate buffer (pH 7.3-7.5)/CH ₂ Cl ₂ , Bu ₄ NHSO ₄ , ~20°, 41 h	$R^1 = H, R^2 = Br I (89)$	34
C ₁₅ O Ph	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, π	Ph Ph Ketone Time Tentagel S-Br 48 h (13) Hydroxymethyl resin 48 h (9) C ₆ H ₅ COCF ₃ 24 h (11) 4-CF ₃ COC ₆ H ₄ CO ₂ Me 24 h (7)	266
Ph	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, 0°, 8 h Me Ketone = $\begin{pmatrix} Me \\ N \\ O \end{pmatrix}$	O Ph (64)	40
OH Ph Ph	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, π	Ph	266
C ₁₆	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 2 h Ketone = Ph N Ph	Ph O I (92)	38
	Mé Me Ketone, Oxone®, NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, π, 2.5 h	I (92)	38

-	Substrate	Conditions	TU-GENERATED DIOXIRANES (Continued) Product(s) and Yield(s) (%)	Refs.
As .	OBn	Acetone, Oxone [®] , H ₂ O/CH ₂ Cl ₂ , (pH 8.0), Bu ₄ NHSO ₄ , 0°, 6.5 h	OBn (58)	168
	THPO CO ₂ Et	TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, 0°, 30 min	THPO CO ₂ Et (72)	276
C ₁₉	$MeO_2C(\sqrt{)_7}$ C_6H_{13}	2-Butanone, Oxone [®] , NaHCO ₃ , H ₂ O, Bu ₄ NHSO ₄ , dark, rt, 2 h	MeO_2C O C_6H_{13} (100)	69
	$MeO_2C(\sqrt{)_7}$ OH C_6H_{13}	2-Butanone, Oxone [®] , NaHCO ₃ , H ₂ O, Bu ₄ NHSO ₄ , dark, rt, 2 h	MeO ₂ C($\frac{O}{r}$) OH C_6H_{13} (89) dr = 50:50	69
C ₂₂	MeQ OH	Ketone, Oxone [®] , buffer (pH 7.5), CH_2Cl_2 , Bu_4NHSO_4 , 0° , 24 h O Ketone = $\begin{pmatrix} O \\ N \\ Cl_2H_{25}-n \end{pmatrix}$	OH OH (81)	168
C ₂₇	но	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, π	Ketone Time	266
C ₃₂	OTMS OTBDMS	Acetone, Oxone [®] , NaHCO ₃ , H ₂ O/CH ₂ Cl ₂ , 18-crown-6, rt, > 1 h	OH (75) BnQ OTBDMS	277
C ₅₃	Ph NH O OH Aco	1. TFP, Oxone [®] , NaHCO ₃ CH ₃ CN/H ₂ O, 2. HCl (1 N), 0°	Ph NH O OH AcO OH AcO BZO (88)	278, 278a

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₃	NH₂	1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. DMD, acetone/CH ₃ CN, 0°, 8 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	ONH ₂ I (45)	65
		1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. TFD, CH ₂ Cl ₂ /CH ₃ CN, 0°, 0.1 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	I (72)	65
c,	N H	1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. DMD, acetone/CH ₃ CN, 0°, 8 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	O N H	65
		1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. TFD, CH ₂ Cl ₂ , 0°, 0.1 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	I (79)	65
C ₆	în сно	DMD (x equiv), acetone	I II III N+ CO ₂ H O IV	- 279
			x Temp Time % Convn (I+II) III IV 1.0 0° 2 h 42 (42) (—) (—) 1.0 0° 4 h 60 (56) (2) (2) 1.0 0° 8 h 75 (68) (5) (2) 2.0 0° 2 h 72 (65) (—) (7) 1.0 -20° 12 h 67 (67) (—) (—) 1.5 -20° 12 h 79 (79) (—) (—) 2.0 -20° 12 h 86 (80) (3) (3) 1.0 20° 1 h 85 (79) (3) (3)	
/	NH ₂	1. 4-MeC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. DMD, acetone/CH ₂ Cl ₂ , 0°, 3.5 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	O _{NH2} (90)	65
k	NH ₂	1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. DMD, acetone/CH ₂ Cl ₂ , 0°, 1.5 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	NH ₂ (81)	65
=	NH₂	1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. DMD, acetone/CH ₂ Cl ₂ , 0°, 3.5 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	NH ₂ (96)	65

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₇ S Me + S Me	DMD, acetone/CHCl ₃ , N ₂ , 0°	O	280
	TFD, TFP/CHCl ₃ , N ₂ , 0°	I + CI Me II () + S Me III ()	280
O S Me + O S Me	DMD, acetone/CHCl ₃ , N ₂ , 0°	II + III (—) II:III = 44 :56	280
-	TFD, TFP/CHCl ₃ , N ₂ , 0°	II + III (—) II : III = 49:51	280
O O O O O O O O O O O O O O O O O O O	DMD, acetone/CHCl ₃ , N ₂ , 0°	II + MeO Me Me Me Me Me Me Me Me	280
	TFD, TFP/CHCl ₃ , N ₂ , 0°	IV + II () IV:II = 44:56	280
O ₂ N + O Ne MeO S Me	DMD, acetone/CHCl ₃ , N ₂ , 0°	$V + O_2N$ $V = 5:95$ $V = 5$	280
	TFD, TFP/CHCl ₃ , N ₂ , 0°	IV + V (—) $V:IV = 27:73$	280
EtO ₂ C OR	DMD, acetone, rt	OR I + EtO ₂ C II R Time % Convn I dr of I II H 18 h >95 (0) — (100) Ac 48 h >95 (100) 65:35 (0)	73
OH NO ₂	DMD, acetone, ~25°, overnight	O (75)	281
C ₈ OH Ph Ph	DMD, CH ₂ Cl ₂ /acetone, 0°, 8 h	Ph I + Ph I I I I (—) I:II = 35:65	73
○ NH₂	1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. DMD, acetone, 0°, 1 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	O (80)	65
TMS R^2	DMD, acetone, rt, 4 to 10 h	TMS R^2 + TMS R^2 TMS R^2 R^2 R^3 R^4 R^2 R^4 R^5 R^6 R^7 R^8 $R^$	74
		2 H t-Bu (64) (16) (0)	

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₀	$\frac{R^1}{R^2} = \langle$	DMD	$\begin{array}{c cccc} & OH & & & & & & \\ \hline R^1 & & & & & \\ \hline R^2 & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	71
		1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. DMD, acetone/CH ₂ Cl ₂ , 0°, 2.5 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	O H 1 (95)	65
		1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. TFD, CH ₂ Cl ₂ , 0°, 0.1 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	I (95)	65
C ₁₁	N Ph	DMD, acetone, 0°, <1 h	^ (~100)	62
	N _{Ph}	DMD, acetone, 0°	(100)	63
		1. BF ₃ *Et ₂ O, 70° 2. TFD, CH ₂ Cl ₂ /TFP, 0° 3. KHCO ₃	O N Ph (82)	63
		DMD, acetone, 0°	(100) N+ O-	63
		1. BF ₃ •Et ₂ O, 70° 2. DMD, CH ₂ Cl ₂ /acetone, 0 3. KHCO ₃	(95)	63
	SPh	DMD (1 equiv), acetone/ CH ₂ Cl ₂ , -35°, 1 h	S-Ph (81)	66
		DMD (3 equiv), acetone/ CH ₂ Cl ₂ , -35°, 3 h	$\stackrel{O=S-Ph}{>} = (91)$	66
C ₁₂	TMS	DMD, acetone, 25°, 35 h	TMS (~80)	218
C12	Sph	DMD (1 equiv), acetone/ CH ₂ Cl ₂ , -40°, 5 h	O S Ph (67)	66

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		DMD (3 equiv), acetone/ CH ₂ Cl ₂ , -40°, 3.5 h	O S Ph (62)	66
	N _{Me}	DMD, acetone, 0°, <1 h	(-100) + (-100) + (-)	62
		DMD, acetone, 0°, <1 h	-O'N (~100)	63
		1. BF ₃ *Et ₂ O, 70° 2. DMD, acetone/CH ₂ Cl ₂ , 0° 3. KHCO ₃	(85)	63
C ₁₃	NHBn	1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. DMD, acetone/CH ₂ Cl ₂ , 0°, 1.5 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	NHBn (93)	65
C ₁₄	Ph	DMD, acetone, 0°	Ph— 0 (100)	63
		1. BF ₃ •Et ₂ O, 70° 2. DMD, acetone/CH ₂ Cl ₂ , 0° 3. KHCO ₃	O (97)	63
	Ph	DMD, acetone, 0°	Ph——NO-	63
22		1. BF ₃ *Et ₂ O, 70° 2. TFD, TFP/CH ₂ Cl ₂ , 0° 3. KHCO ₃	O (70)	63
C ₁₅	PhMe ₂ Si OH	DMD, acetone, 20°, 16 h	OH (-)	282
~13	OH =	DMD	OH (-)	71

100	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₅₋₁₆	S R	DMD (x equiv), CH ₂ Cl ₂ / acetone, 20°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	П 66 R
C ₁₆₋₂₃	$\bigcup_{S}^{O} \bigcup_{R^{1}} \bigcup_{R^{2}}$	DMD (x equiv), CH ₂ Cl ₂ , acetone, 20°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	66 R ²
			H Cl 2.2 2 h (0) (100) H H 1.3 1 h (75) (14) H H 2.2 2 h (0) (100) H Me 1.3 1 h (73) (13) H Me 2.2 2 h (0) (100) H MeO 1.2 1 h (78) (10) H MeO 2.2 2 h (0) (100)	
			R¹ R² x Time I II Ph Cl 1.3 1 h (81) (13) Ph Cl 2.2 2 h (0) (100) Ph H 1.2 1 h (82) (9) Ph H 2.2 2 h (0) (100) Ph Me 1.3 1 h (74) (11) Ph MeO 1.3 1 h (77) (11) Ph MeO 2.2 2 h (0) (100)	
C ₁₇	OH TMS	DMD	OH (-) TMS	71
Į.	но	DMD	HO (-)	71
n-i	C_8H_{17} $($ $)$ NH_2	1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O. 0° 2. DMD, acetone/CH ₂ Cl ₂ , 0°, 2 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	$n-C_8H_{17} \xrightarrow{O} NH_2 $ (98)	65

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂₁₂₈	RO	DMD, acetone, rt	HO THO THO THE	283
C ₂₂			R I II III H (—) II=I (—) Bn (30) (37) (16)	
	Ph ₃ Si	DMD, acetone, rt, 6 h	$Ph_3Si \qquad (44) + \qquad Ph_3Si \qquad (9)$	284
C ₂₄	Ph ₃ Si	DMD, acetone, rt, 3.5 h	Ph_3Si (46) + Ph_3Si (22)	284
C ₂₈	O O O O O O O O O O O O O O O O O O O	DMD, acetone/CH ₂ Cl ₂ , -78° to 25°, 4 h	O O O OBu-r (70)	285
C ₂₉	PPh ₃ OBu-t	DMD, acetone/CH ₂ Cl ₂ , -78° to 25°, 4 h	$\begin{array}{c c} & HO & OH \\ & OBu-t & (97) & X = O, S \end{array}$	285
	O O O O O O O O O O O O O O O O O O O	DMD, acetone/CH ₂ Cl ₂ , -78° to 25°, 4 h	O O O O O O O O O O O O O O O O O O O	285
C ₃₃	O O O OBu-t	DMD, acetone/CH ₂ Cl ₂ , -78° to 25°, 4 h	O O O OBu-r (85)	285
C ₃₄	O O O O O O O O O O O O O O O O O O O	DMD, acetone/CH ₂ Cl ₂ , -78° to 25°, 4 h	OBu-r (83)	285

TABLE 3. REGIOSELECTIVE EPOXIDATIONS BY DIOXIRANES

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
C ₇₋₁₂ O R	DMD, acetone/CH ₂ Cl ₂ , 0°, 3.5 h	$ \begin{array}{ccc} O & & & \\ & & & \\ & & & \\ R & & & \\ \end{array} (95) & R = Me, Ph $	286
CF ₃ OR	DMD, acetone or TFD, TFP/CH ₂ Cl ₂	CF ₃ OR	78
		R Dioxirane Temp Time H DMD 20° 15 min (98) H TFD -15° 3 min (98) THP DMD 20° 15 min (98) THP TFD -40° 3 min (99)	
C ₁₀₋₁₃ OR	TFD, solvent, 0 to 10°,	OR OR OR OR OR	80
		R Solvent % Convn I:II H TFP 22 68:32 H MeOH/TFP (9:1) 21 73:27 H CCL4/TFP (9:1) 25 57:43 Me TFP 32 73:27 Me MeOH/TFP (9:1) 31 68:32 Me CCL4/TFP (9:1) 32 71:29 Ac TFP 30 83:17 TMS TFP 33 70:30	
C ₁₀ OH	DMD (x equiv), solvent, rt, 1 to 3 h	O OH + OOH + bis(epoxide)III	72
		x Solvent % Convn I:II:III 1 acetone 93 73:17:10 0.3 acetone/MeOH (1:9) 27 88:12:0 0.3 acetone 28 74:26:0 0.3 CCl ₄ /acetone (9:1) 27 51:49:0 5 acetone >95 <5:<5:95	
	DMD, acetone/CH ₃ CN, buffer, rt	PH % Convn I:II 4.5 17 5.3:1 7.2 19 4.4:1 8.8 18 5.2:1 9.3 20 5.0:1 10.0 20 4.7:1	149a

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Fructose dioxirane, CH ₃ CN/H ₂ O, pH 7.5 Fructose Q 1 O O	I + II (5) $I:II = 5.7:1$	149a
C ₁₁ CF-	dioxirane =	CF ₃	
CO ₂ Me	DMD, acetone or TFD, TFP/CH ₂ Cl ₂	CO ₂ Me I (42)	78
a.	TFD, TFP/CH ₂ Cl ₂ , 0°, 3 min	I (85) + bis(epoxide) (15)	78
R ¹ CO ₂ Me	DMD, acetone or TFD, TFP/CH ₂ Cl ₂	$ \begin{array}{c} R^1 \\ CO_2Me \\ R^2 \end{array} $ $ \begin{array}{c} CO_2Me \\ R^2 \end{array} $ $ \begin{array}{c} CO_2Me \\ R^2 \end{array} $	78
		R¹ R² Dioxirane Temp Time I II CF3 H DMD (excess) 0° 12 d (0) (85) CF3 H TFD (excess) 0° 1 h (0) (93) Me F DMD 20° 15 min (95) (0) Me F DMD -40° 3 min (95) (0) Me F DMD (excess) 0° 8 d (0) (90) Me H DMD 20° 10 min (96) (0) Me H TFD -40° 3 min (97) (0)	
ОН	DMD, solvent, 20°	OH + OH I II Solvent % Convn I:II dr (II) dr (I) MeOH/acetone (9:1) 41 95:5 76:24 50:50 acetone 35 84:16 84:16 50:50 CCl ₄ 26 32:68 94:6 50:50	134a
	TFD, CH ₂ Cl ₂ /TFP, 20°	I + II (—) $I:II = 69:31$ Convn = 25%; dr of $II = 85:15$	134a
	Acetone, Oxone [®] , CH ₃ CN/H ₂ O, 20°	I + II () $I:II = 57:43$ Convn = 18%; dr of $II = 90:10$	134a
C ₁₃	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -40°	OHC O (-100)	214
C ₁₄	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -40°	OHC O (-90)	214
Bn N O	DMD, acetone/CH ₂ Cl ₂ , 0°	Bn N O () + Bn N O () I:II = 70:30	287, 287a

8	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₆	CF ₃ CO ₂ Me	DMD, acetone/CH ₂ Cl ₂ , 20°, 15 min	CF ₃ CO ₂ Me I (100)	78
		TFD, TFP/CH ₂ Cl ₂ , –20°, 3 min	I (85) + CF_3 CO_2Me (15)	78
	CF ₃ CO ₂ Me	DMD, acetone/CH ₂ Cl ₂ , 20°, 3 d	CF ₃ CO ₂ Me (56) + triepoxide (4	4) 78
		TFD, TFP/CH ₂ Cl ₂ , -70°, 1 h	I (85) + triepoxide (8)	78
	CO ₂ Me	DMD, acetone/CH ₃ CN	CO ₂ Me I +	288
			CO ₂ Me II +	
			CO₂Me III (→)	
			Temp % Convn I:II:III	
			20° 84 52:13:22 -50° 95 55:9:28	
			-15° 63 42:13:7	
		DMD (excess), acetone/ CH ₂ Cl ₂ , π, 5 min	III (~100)	288
	CO ₂ Me	DMD, acetone/CH ₂ Cl ₂ rt, 5 min	III (>96)	288
		DMD (excess), acetone/ CH ₂ Cl ₂ , rt, 3 d	CO ₂ Me (-100)	288
	HO OH CO ₂ Me	DMD, acetone/CH ₂ Cl ₂ , NaHPO ₄ , rt, 3 min	HO OH O CO ₂ Me (-)	288
	OTBDMS	Ketone 12, Oxone [®] , NaHCO CH ₃ CN/H ₂ O, EDTA, 0°	O ₃ O OTBDMS I (—) +	149a
			OTBDMS II (—) +bisepoxide (-	-)
C ₁₈	MOMO 0	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -40°	MOMO (~100)	214

	Substrate	Conditions	TIONS BY DIOXIRANES (Continued) Product(s) and Yield(s) (%)	Refs.
		DMD, acetone/CH ₂ Cl ₂ , N ₂ , -40°	OHC O (-100)	214
C ₂₀	MOMO O	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -40°	MOMO OHC O (84)	214
C ₂₃	TMSO	DMD, acetone/CH ₂ Cl ₂ , N ₂ , -40°	TMSO (38) +	214
			TMSO OHC O (12) +	
			TMSO OHC O (24)	
C ₂₉			ОН	
	Aco H	DMD, acetone, rt, 16 h	Aco H (85)	289
C ₃₀		DMD, acetone/CH ₂ Cl ₂ , 0°, 1 h	(6) +	290, 291
			(8) +	
			(9) +	
			(8)	

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
Et ₃ SiC	O TBDMSO	DMD, acetone/CH ₂ Cl ₂ , 0°	OTBDMS Et ₃ SiQ OMe OMe OMe OOMe OOMO OOMO OOMO OOMO O	90
C ₉₄ Et ₃ SiC	OMe OSiEt ₃ 1-Pr ₃ SiO ₂ C	DMD, acetone/CH ₂ Cl ₂ , 0°, 5 min	OTBDMS Et ₃ SiQ OMe OSiEt ₃ TBDMSO OAc OSiEt ₃ OSiEt ₃	90

Substrate	Conditions	Pro	duct(s)	and Y	ield(s) (%), Diastereon	neric Ra	tio (dr)	Refs
C46 OH R! R2 R3	DMD, solvent, 0 to 20°, 1 to 8 h	R ¹ OI	_ 1	I +	ОН R ¹ П R ² R ³	(>95)		72, 292, 293
		\mathbb{R}^1	R ²	\mathbb{R}^3	Solvent 9	Convn	I:II	
		н	Н	Н	acetone	89	50:50	
		Me	н	H	MeOH/acetone (9:1)	>95	57:43	
		Me	H	H	acetone	>95	60:40	
		Me	H	Н	CCl4/acetone (9:1)	>95	70:30	
		H	Me	Н	acetone	78	53:47	
		н	Me	Н	CCl4/acetone (9:1)	>95	56:44	
		н	H	Me	MeOH/acetone (9:1)	86	64:36	
		н	H	Me	acetone	>95	67:33	
		H	H	Me	CCl ₄ /acetone (9:1)	>95	85:15	
		H	Me	Me	MeOH/acetone (9:1)	>95	59:41	
		н	Me	Me	acetone	87	76:24	
		н	Me	Me	CCl ₄ /acetone (9:1)	>95	82:18	
		Me	H	Me	MeOH/acetone (9:1)	>95	82:18	
		Me	H	Me	acetone	>95	87:13	
		Me	Me	H	acetone	(—)	51:49	
		Me	H	Me	CCl ₄ /acetone (9:1)	>95	91:9	
		Me	Me	Me	acetone	>95	>95:5	
	TFD, solvent, 0 to 10°,	I + II (95)					80
	15 to 60 min	\mathbb{R}^1	R ²	R ³ S	olvent % Convr	I:II		
		Н	Н	H C	CL/TFP (9:1) >95	55:45		
		Me	Н	н т	FP >95	53:47		
		Me	н	н с	CL/TFP (9:1) >95	62:38		

Substrate	Conditions Product(s) and Yield(s) (%), Diastereomeric Ratio (dr) Re
	R ¹ R ² R ³ Solvent % Convn I:II
	H Me H TFP 95 48:52
	H Me H CCL/TFP (9:1) 76 43:57
	H H Me TFP 95 77:23 H H Me CCL/TFP (9:1) 93 88:12
	H H Me CCL/TFP (9:1) 93 88:12 H Me Me TFP >95 76:24
	H Me Me CCl4/TFP (9:1) >95 82:18
	Me H Me TFP >95 85:15
	Me H Me CCL4/TFP (9:1) 60 90:10
C ₄₋₇	DMD, acetone $I + II (-)$ $R^1 R^2 R^3 I:II$ 29
	H Me H 53:47
	H H Me 67:33
	Me H H 60:40 H Me Me 76:24
	Me H Me 87:13
C	Me Me Me 95:5
C ₄₋₁₂ R ¹ OH	DMD, CH_2Cl_2 /acetone, H OH $+$ H OH $+$ OH $+$
R ³ R ²	rt, 3.5 h R^3 R^2 R^3 R^2 R^3 R^2 R^3 R^2
	R^1 R^2 R^3 $I+II$ III $I:II$
	H Me H (>95) (<5) 50:50
	TMS Me H (32) (68) 60:40 TMS –(CH ₂) ₃ - (<5) (>95) –
	TMS $-(CH_2)_3-$ (<5) (>95) $-$ SiMe ₂ Ph Me H (10) (90) 55:45
	Suntage II (10) (30) 33.43
C ₅ OH	он он о
	DMD, acetone, rt, 2 h $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
C ₅₋₇	
OR	DMD or TFD, solvent, O°, time OR OR I + II + III (>95) 29
	I II III
	R Dioxirane Solvent Time % Convn I:II (I+II):III H DMD acetone 55 min 92 53:47 70:30
	H DMD acetone/CH ₂ Cl ₂ (1:1) 40 min 95 61:39 90:10
	H TFD CCl ₄ 10 min 95 70:30 66:34
	Me DMD acetone 90 min 54 20:80 95:5
	Me DMD acetone/CH ₂ Cl ₂ (1:1) 75 min 60 30:70 95:5
	Me TFD CCl ₄ 20 min 70 8:92 98:2
	Ac DMD acetone 150 min 60 30:70 —
	Ac DMD acetone/CH ₂ Cl ₂ (1:1) 120 min 72 36:64 — Ac TFD CCl ₄ 30 min 56 38:62 —
	Ac TFD CCl ₄ 30 min 56 38:62 —
C ₅	8 8
I	DMD, acetone/CH ₂ Cl ₂ , + (71) $\mathbf{I}:\mathbf{II} = 42:58$
∕O ₂ H	20°, 1 h O ₂ H
	I II
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

-	Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
C ₅₋₆ RO		DMD or TFD, solvent, 0°, time	RO I + RO II (>95)	294
			R Dioxirane Solvent Time % Convn I:II H DMD acetone 70 min 96 54:46 H TFD CCl ₄ 18 min 85 78:22 Me DMD acetone 70 min 96 15:85 Me TFD CCl ₄ 18 min 85 2:98	
C ₅₋₇ OH R ²		DMD, acetone/CH ₂ Cl ₂	$OH OH OH R^2 + OR^2 + R^3 R^2 + R^3$	73
			R1 R2 R3 Temp % Convn I:II (I+II):III Me Me H 0° 78 53:47 81:19 H $-(CH_2)_3 -20^\circ$ >95 72:28 46:54 H $-(CH_2)_3-$ 0° 80 53:47 70:30 Me Me Me -78° >95 76:24 >95:5 Me Me Me 0° 87 77:23 >95:5 Me i-Pr H -20° >95 63:37 47:53 Me i-Pr H 0° >95 595:5 99:10 H $-(CH_2)_3-$ 0° >95 >95:5 >95:5 H n -C ₃ H ₁₁ H 0° >95 66:34 51:49 Me n -Bu H -20° 96 52:48 47:53 Me n -Bu H 0° >95 52:48 71:29	
c ₆		DMD, acetone/CH ₂ Cl ₂ , N ₂ , -20°, 3.5 h	$O = O \longrightarrow I + O = O \longrightarrow I = 60:40$	44
0		DMD, acetone/CH ₂ Cl ₂ , N ₂ , -20°, 3.5 h	$0 \rightarrow 0$ $I + 0 \rightarrow 0$ $II (-) I:II = 65:35$	44
o's:		DMD, rt	S: OS: II	295
			Solvent Time I+II I:II acetone 7 h (88) 77:23 CCL/acetone (9:1)12 h (85) 70:30	
;; °°		DMD, rt	1+ F 1	295
			Solvent Time II I:II acetone 2 h (95) 0:100 CCl ₄ /acetone (9:1) 5 h (95) 0:100	

	Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs
CI		DMD, solvent, rt, 60 min	CI CI II Solvent % Convn I:II	67
Br		DMD, acetone, rt, 60 min	acetone 76 90:1 CH ₂ Cl ₂ /acetone (1:1) 74 93: Br II Convn = 58%; I:II = 92:8	
\square R		DMD, rt	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	295
			R Solvent Time I:II	
			H acetone 12 min (99) 44:56	
			H CCl ₄ /acetone (9:1) 30 min (99) 55:45 OH acetone 2 h (70) 57:43	
			OH CCl ₄ /acetone (9:1) 1 h (80) 67:33	
			OMe acetone 7 h (99) 49:51	
			OMe CCl ₄ /acetone (9:1) 10 h (99) 62:38 OMs acetone 5 h (85) 79:21	
			OMs CCI ₄ /acetone (9:1) 12 h (99) 90:10	
			OAc acetone 2 h (69) 72:28	
			OAc CCl ₄ /acetone (9:1) 6 h (99) 68:32	
			OTs acetone 2 h (97) 63:37 OTs CCl ₄ /acetone (9:1) 8 h (99) 82:18	
ОН		DMD, acetone, 20°, 6 h	OH OH OH (93)	75
			I:II = 47:53; (I + II):III = 70:30	
		DMD, acetone/CH ₂ Cl ₂ , rt, 4 h	I + II + III $I + III (80), III (10); I:II = 25:75$	133
		DMD, solvent, rt, 60 min	I + II + III	296
			Solvent % Convn 1:II (I+II):III acetone 94 54:46 46:54	
			acetone 94 54:46 46:54 CH ₂ Cl ₂ /acetone (1:1) 94 43:57 65:35	
			CH ₂ Cl ₂ /acetone (9:1) 89 22:78 84:16	
			CH ₂ Cl ₂ /acetone (97:3) 77 18:82 89:11	
			MeOH/acetone (9:1) 100 66:34 75:25 CHCl ₃ /acetone (9:1) 100 88:12 88:12	
			CHCl ₃ /acetone (9:1) 100 88:12 88:12 CCl ₄ /acetone (9:1) 87 15:85 52:48	
			CCl ₄ /acetone (95:5) 86 6:94 59:41	
		Ketone, Oxone®, CH ₂ Cl ₂ /	u	***
		MeOH, buffer (pH 11.0), KOH, rt	1 + II	297
		an VII, II	Ketone Time I:II	
			acetone 1.5 h (69) 64:36 2-methylcyclohexanone 3.5 h (63) 71:29	
			z-memvicycionexanone 3.3 n (03) /1:29	

Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
	Ketone, Oxone [®] , NaHCO ₃ CH ₃ CN/H ₂ O, Na ₂ EDTA, rt), I + П (—)	81
		Ketone I:II Ketone I:II	
		1.3:1 PH N Ph N Ph Mé Me	
		- Tro 5.9:1 Plf N Ph Mé Me Cl 2.1:1	
		1.6:1 0 1.7:1 0 1.6:1 0 1.9:1	
C ₆₋₁₀ OH R ² R ¹	TFD, solvent, 0 to 10°, 15 to 60 min	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80
		R1 R2 R3 Solvent % Convn I:II H H H TFP 70 57:43 H H H CCl ₄ /TFP (9:1) 78 70:30 Me Me Me TFP 84 88:12 Me Me Me CCl ₄ /TFP (9:1) 70 94:6 H H t-Bu TFP 80 73:27	
C ₆ O ₂ H	DMD, acetone, 20°, 2 to 8 h	O_2H O_2H O_2H O_2H O_3H O_4H	75
	DMD, solvent, rt, 20 h	Solvent % Convn I:Π acetone 100 84:16 CH ₂ Cl ₂ /acetone (1:1) 100 82:18	67
CO ₂ H	DMD, acetone, 8 h	CO_2H CO_2H $II (>95)$ $I:II = 46:54$	298
CI	DMD, acetone, 7 h	I + CI $II = 90:10$	298

	Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
	NH ₂	1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. DMD, acetone/CH ₂ Cl ₂ , 0°, 1 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	NH_2 $I + O$ $I = 90:10$	65
		1. 4-ClC ₆ H ₄ SO ₃ H, Et ₂ O, 0° 2. TFD, CH ₂ Cl ₂ /CH ₃ CN, 0°, 0.1 h 3. K ₂ CO ₃ , MgSO ₄ , CH ₂ Cl ₂ , 0°, 5 h	I + II (72) $I:II = 50:50$	65
	OH	DMD, solvent, ~20°, 6 h	OH I+ OH II	87
			Solvent I:II acetone 76:24 MeOH/acetone (1:1) 60:40 AcOEt/acetone (1:1) 71:29 CCl_/acetone (1:1) 76:24 hexane/acetone (1:1) 77:23 CCl_/acetone (9:1) 82:18 hexane/acetone (9:1) 82:18	
		TFD, acetone-d ₆ /CDCl ₃ , 0.5 h	I + II (>95) I:II =60:40	298
		TFD, CCl ₄ , 0.5 h	I + II (57) $I:II = 92:8$	298
	CH ₂ OH	DMD, acetone, 2 h	CH ₂ OH CH ₂ OH + CH ₂ OH (>95) I:II = 38:62	298
		TFD, CCl4/TFP, 0.5 h	$I + \Pi$ (>95) $I:II = 24:76$	298
	O ₂ H	DMD, acetone, 5 h	O ₂ H O ₂ H (>95) I:II = 69:31	298
		TFD, CCl ₄ /TFP, 0.5 h	I + II (>95) I:II = 80:20	298
C ₇	CF ₃	DMD, solvent, rt, 60 min	CF ₃ CF ₃ CF ₃ I Solvent CF ₃	67
			acetone 70 90:10 CH ₂ Cl ₂ /acetone (1:1) 73 94:6	

	Substrate	Conditions	Produc	ct(s) and Yield(s) (%), I	Diastereon	neric Ratio	o (dr)	Refs
CN		DMD, solvent, rt, 60 min	CN To	τ + CN π				67
			Solvent acetone CH ₂ Cl ₂ /aceto	78 51:49 one (1:1) 74 57:43				
CO ₂ H		DMD, solvent, rt, 60 min	CO ₂ H	(I + CO ₂ H II				67
v			Solvent acetone CH ₂ Cl ₂ /aceton CHCl ₃ /acetone	ne (9:1) 54 87:13				
C ₇₋₁₄ R		DMD, solvent, rt		т + п				67
			R	Solvent	Time '	% Convn	І:П	
			Br	acetone	60 min	100	38:62	
			Br	CH ₂ Cl ₂ /acetone (1:1)	60 min	100	40:60	
			Br	MeOH/acetone (1:1)	90 min	100	45:55	
			Br	CCl ₄ /acetone (9:1)	5 h	100	27:73	
			ОН	acetone	60 min	100	44:56	
			ОН	CH ₂ Cl ₂ /acetone (9:1)	60 min	100	30:70	
			ОН	CH ₂ Cl ₂ /acetone (95:5)	60 min	68	28:72	
			ОН	CHCl ₃ /acetone (9:1)	60 min	100	37:63	
			OH	CCl ₄ /acetone (9:1)	60 min	92	33:67	
			ОН	CCl ₄ /acetone (95:5)	60 min	84	26:74	
			OH	MeOH/acetone (9:1)	120 min	72	55:45	
			OAc	acetone	60 min	100	40:60	
			OAc	CH ₂ Cl ₂ /acetone (9:1)	60 min	100	40:60	
				acetone	15 min	100	37:63	
			CO ₂ Me	CH ₂ Cl ₂ /acetone (9:1)	60 min	96	39:61	
			CO ₂ Me	CCl ₄ /acetone (9:1)	60 min	91	29:71	
				acetone	15 min	100	35:65	
				CH ₂ Cl ₂ /acetone (9:1)	60 min	87	38:62	
			CO ₂ Et	CCl ₄ /acetone (9:1)	60 min	89	27:73	
			CO ₂ Et	CCl ₄ /acetone (95:5)	60 min	80	26:74	
			CO ₂ Et	MeOH/acetone (9:1)	60 min	84	41:59	
				acetone	15 min	100	36:64	
			NHCOPh	CCL/acetone (9:1)	60 min	100	18:82	

NHCOPh CCl₄/acetone (9:1) 60 min 100 18:82 NHCOPh CCl₄/acetone (95:5) 60 min 100 13:87

	TABLE 4. DIASTERE	SOSELECTIVE EPOXIDATIO	NS OF OLEFINS BY DIOXIRANES (Continued)	
	Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomer Ratio (dr)	Refs.
C ₁		DMD, solvent, rt, 60 min	о т	67
			Solvent % Convn I:II acetone 100 48:52 CH ₂ Cl ₂ /acetone (9:1)100 53:47 CCl ₄ /acetone (9:1) 100 47:53	
OH		DMD, acetone, rt, 2 h	OH OH OH OH OH OH	83
			I:II = 67:33; (I + II):III = 62:38; I + II + III ()	
OMe		DMD, acetone, 20°, 2 h	OMe OMe II + III	75
			I:II = 75:25; (I + II):III = 81:19; I + III + III (92)	
ОН		DMD, acetone/CH ₂ Cl ₂ , rt, 3 h	он он он ш он он ш	133
			V. W. (00). W. (10). VW. 20 70 V. W. W. (
			I + II (88); III (10); I:II = 30:70; I + II + III ()	
		DMD, solvent, rt, 60 min	I + II + III Solvent % Convn I:II (I+II):III acetone 95 65:35 65:35	67
			CH ₂ Cl ₂ /acetone (4:1) 93 39:61 85:15 CH ₂ Cl ₂ /acetone (9:1) 96 35:65 89:11	
			CH ₂ Cl ₂ /acetone (95:5) 81 13:87 94:6	
			CH ₂ Cl ₂ /acetone (9:1) 69 82:18 86:14 t-BuOH/acetone (9:1) 85 73:27 88:12	
			AcOH/acetone (9:1) 100 74:26 89:11	
			CHCl ₃ /acetone (9:1) 91 17:83 93:7	
		Ketone, Oxone®,	CCl ₄ /acetone (9:1) 89 21:79 76:24	
		NaHCO ₃ , CH ₃ CN/	I + II Ketone I:II Ketone I:II McCOMe 1.4:1 O	81
		H ₂ O, Na ₂ EDTA, rt	E-COE:	
			CICH ₂ COMe 3.5:1	
			CICH ₂ COCH ₂ CI 5.2:1 6 0 0 CF ₃ COMe 9.1:1	
			0 4.4:1	
			2.0:1 Ph N Ph TfO-	
			Ph N Ph TfO	
			O 3.9:1 O 2.9:1	
			3.3:1	
			O 3.5:1	

-	Substr	20 EVENTORS	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
C ₈	Me ₃ Sn	DMD, CH ₂ Cl ₂ /acetone, rt, 3.5 h	OH Me ₃ Sn (23), dr 80:20 + Me ₃ Sn (77)	74
C8		DMD, acetone, ~20°	o (-)	299
	Š	DMD, acetone, ~20°	O (100)	299
		DMD, acetone, ~20°	O (100)	299
	∞	DMD, acetone, ~20°	O (-)	299
	OAc	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/ H ₂ O, Na ₂ EDTA, rt	OAC OAC II	81
			MeCOMe 1:II Ketone I:II	
			CF ₃ COMe 1.9:1 O 2.3:1 Ph N Ph TfO	
			2.8:1 Ph N Ph TfO-	
			Cl 2.7:1 Q O 1.6:1	
			2.1:1	

TABLE 4. DIASTERFOSELECTIVE EPOXIDATIONS OF OLEFINS BY DIOXIRANES (Continued)

TABLE 4. DIAS	TEREOSELECTIVE EPOXIDATIO	NS OF OLEFINS BY DIOXIRANES (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
	DMD, acetone, 20°, 4 h	I + II (>98) I:II = 72:28	75
	DMD, acetone/CH ₂ Cl ₂ , rt, 2 h	I + II (95) I:II = 65:35	157
	DMD, solvent, rt, 60 min	Solvent	300, 67
	DMD, acetone/CH ₂ Cl ₂ , Ar, 0 to 5°, 14 h	€ ↔	187
	DMD (2.5 equiv), acetone/CH ₂ Cl ₂ , Ar, 0 to 5°, 13 h	(54) dr 72:28	187
CO ₂ Me	DMD, solvent, rt, 60 min	CO ₂ Me CO ₂ Me II	67, 300
		Solvent % Convn I:II acetone 97 55:45 CH ₂ Cl ₂ /acetone (1:1) 95 58:42 CCl ₄ /acetone (9:1) 56 68:32	
	DMD, acetone, 20°, 4 h	O I + O Π (95) I:II = 72:28	133
	Methyl(isopropyl)dioxirane, 3-methyl-2-butanone, 20°, 4 h	I + II (24) $I:II = 70:30$	75
	Diethyldioxirane, 3-pentanone, 20°, 4 h	I + II (95) $I:II = 72:28$	75
	Cyclohexanone dioxirane, cyclohexanone, 20°, 4 h	I + II (85) $I:II = 80:20$	75
	DMD, solvent, rt, 60 min	I + II (→) Solvent % Convn I:II acetone 100 73:27 CH ₂ Cl ₂ /acetone (7:3) 100 77:23	67

Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
	Ketone, Oxone [®] , CH ₂ Cl ₂ / MeOH, buffer (pH 11.0),	I + II (—)	297
	KOH, 18-crown-6, 0 to 5°	Ketone Time I:II	
		acetone 3.0 h (56) 86:14	
		cyclohexanone 3.5 h (80) 91:9	
		2,6-dimethylcyclohexanone3.5 h (83) 88:12	
		2-phenylcyclohexanone 4.0 h (68) 93:7	
		2-chlorocyclohexanone 3.0 h (100) 96:4	
		camphor 18.5 h (70) 77:23	
	Ketone, oxygen donor,		
	CH ₃ CN/phosphate buffer	I + II (—)	301
	(pH 7.4)	Ketone Oxidant % Convn I:II	
		MeCOCO ₂ Me Oxone [®] 42 46:1	
		MeCOCOMe Oxone® 15 100:0	
		MeCOCO ₂ Me NaNO ₃ 16 4.8:1 MeCOCOMe NaNO ₃ 23 100:0	
	DMD, acetone, 20°, 4 h	I + II (>95) $I:II = 72:28$	75
	Oxone [®] , acetone, NaHCO ₃ , MeOH/H ₂ O, 20°, 4 h	I + II (73) $I:II = 74:26$	75
	Ketone, Oxone®,		
	NaHCO ₃ , CH ₃ CN/	I + II (—)	81
	H ₂ O, Na ₂ EDTA, rt		
		Value LII Value LII	
		Ketone I:II Ketone I:II MeCOMe 3.7:1 Q	
		FICOE: -	
		CICH ₂ COMe 4.7:1	
		CICH ₂ COCH ₂ CI 5.4:1 O O	
		CF ₃ COMe 8.4:1	
		O TFO 3.8:1	
		4.4:1 Ph N Ph Me Me	
		Ŷ	
		- Tf0- 18.7:1	
		Ph N Ph Mé Me	
		Cl 5.4:1 0 0 4.7:1	
		0 4.7:1	
		4.4:1	
		4.4:1	
		4.4:1	
Et I		Et Et	
	DMD, acetone, rt, 60 min	I + Convn = 100%	67
		I:II = 55:45	

40.00	Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
OMe		DMD, solvent, rt, 60 min	OMe OMe O II + O III	67
			Solvent % Convn I:II (I+II):III acetone 100 95:5 87:13 CH ₂ Cl ₂ /acetone (4:1) 75 95:5 92:8 CH ₂ Cl ₂ /acetone (95:5) 92 95:5 91:9 CCl ₄ /acetone (95:5) 86 5:95 80:20	
ОН		DMD (0.9 equiv), acetone/ CH ₂ Cl ₂ , 20°, 0.2 h	OH OH OH OH (<2) + OH	14
		DMD (2.2 equiv), acetone/ CH ₂ Cl ₂ , 20°, 168 h	I(58) + II(<3) + III(39)I:II =>95:<5	14
		Oxone [®] , acetone/CH ₂ Cl ₂ , phosphate buffer (pH 7.5), 18-crown-6, 6 to 8°, 4 h	I + II (91) I:II = 99:1	302
но		DMD (0.9 equiv), acetone/ CH ₂ Cl ₂ , 20°, 0.2 h	HO HO (43) + O (6) $I = 47:53 \qquad \Pi$	14
но		DMD (0.9 equiv), acetone/ CH ₂ Cl ₂ , 20°, 0.2 h	HO (48) + HO (38) +	14
			O (3) I:II = 56:44	
CO ₂ Et		DMD, acetone, 2 h	CO_2Et CO_2Et $I + CO_2Et$ $II (>95) I:II = 51:49$	298
C ₈₋₂₂ R		TFP, Oxone [®] , MeCN/H ₂ O, Na ₂ EDTA, 0°, 2 to 3 h	$R \longrightarrow O I + R \longrightarrow O II (-)$	303
			R I:II MeO 94:6 MeO ₂ C 72:28 AcOCH ₂ 90:10 Et ₃ SiO 98:2 TBDMSO 98:2 PhCO ₂ 81:19 PhCO ₂ CH ₂ 81:19	

	Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
C9 000		TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, (pH 7-7.5), 0 to 1°, 15 min	I () + I:II = 67:33	304
		TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, (pH 7-7.5), 0 to 1°, 9 h	О. I (60) + О П (30) I:П = 67:33	304
OAc .		DMD, acetone/CH ₂ Cl ₂ , rt, 1.5 h	OAC I + OAC II (90) I:II = 90:10	133
		DMD, solvent, rt, 60 min	Solvent % Convn 1:II acetone 94 87:13 CCl₄/acetone (9:1) 63 88:12	67
		Ketone, Oxone [®] , CH ₃ CN/ H ₂ O, NaHCO ₃ , Na ₂ EDTA, rt	Ketone I:II Ketone I:II O	81
		DMD, acetone, rt, 16 h	O (76) + O (12)	305

Substrate	Conditions	ONS OF OLEFINS BY DIOXIRANES (Continued) Product(s) and Yield(s) (%), Diastereomeric Ratio (dr) Re
CO ₂ Et	DMD, solvent, rt, 60 min	CO_2Et
		Solvent % Convn I:II acetone 82 66:34 CH ₂ Cl ₂ /acetone (9:1) 41 62:38 CCl ₄ /acetone (9:1) 22 62:38
CO ₂ Et OAc	DMD, acetone, 20°, 3 d	O_{OAc}
r-BuQ H	DMD, CHCl ₃ /acetone	r -BuO $\stackrel{\text{H}}{\sim}$ 0 (100) dr = 86:14 203
Pr-i	DMD, acetone, rt, 2 h	Pr-i $I + Pr-i$ $I = 78:22$ 83
OH	DMD, solvent, ca. 20°	OH OH OH O II + O III 87
		Solvent Time % Convn I:II (I+II):III MeOH/acetone (9:1) 1.5 h 66 62:38 92:8 acetone 0.5 h >95 83:17 77:23 CCL/acetone (9:1) 12 h >95 96:4 92:8
OMe MeQ O	DMD, acetone/CH ₂ Cl ₂ , 5°, 90 min	OMe MeO (88) 306
OTMS	DMD, acetone, 20°, 2 to 8 h	OTMS OTMS $I + \bigcirc I = 88:12$ 75
	DMD, acetone, 20°, 12 h	I + II +
	DMD, solvent, rt, 60 min	Solvent

	Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs
C ₉₋₁₈ OTMS $R^{1} {\underset{R^{2}}{\bigcap}} R^{1}$		DMD,THF/acetone, -78°	HO R^{1} R^{2} R^{1} R^{1} R^{2} R^{1} R^{1} R^{2} R^{1} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R	307
C ₁₀ O CF ₃ SMe		DMD, acetone, Ar, rt	O HN CF ₃ SO ₂ Me (91)	308
Ojectra		DMD, acetone, 25°, 3 h	OH (36) + (49)	309
C ₁₀₋₁₃ Ph		DMD, CHCl ₃ /acetone	R H (99) 93:7 Me (100) 86:14 CH ₂ =CHCH ₂ (97) 75:25	203
C ₁₀		DMD, acetone/CH ₂ Cl ₂ , Ar, 0°, 5 h	(35) + (40)	187
		DMD (2.5 equiv), acetone/ CH ₂ Cl ₂ , Ar, 0°, 5 h	(-100)	187
Do		DMD, acetone/CH ₂ Cl ₂ , Ar, 0 to 5°, 14 h	(45)	187
		DMD (2.5 equiv), acetone/ CH ₂ Cl ₂ , Ar, 0 to 5°, 14 h	0 I (51)	187
		DMD, acetone/CH ₂ Cl ₂ , Ar, 0°, 3 h	I (~100)	187
OH Ph R ²		DMD, acetone, rt, 15 h (95% convn)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	310

X	Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
		DMD, acetone, 20°, 2 to 8 h	O I + O II (>95) I:II =55:45	75
CO ₂ Me		Acetone, Oxone [®] , phosphat buffer (pH 7.2)	te CO_2Me (50) + CO_2Me (32)	84
MeO ₂ C		DMD, acetone	MeO_2C O MeO_2C O	311
OLi C ₁₀₋₂₀		1. DMD, acetone/THF, -78°, 1.8 min 2. NH ₄ F, H ₂ O, 20°	OH + OH (>95) I:II = 76:24	312
OML ₃		1. DMD, THF/acetone, -78°, 1 min 2. NH ₄ F, H ₂ O, rt, 1 to 12 h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	97, 210
C ₁₀		DMD, acetone, 20°, 1 to 3 h	$I + U = 67:33; \mathbf{HI}:\mathbf{IV} = 50:50; (I + \mathbf{II}):(\mathbf{III} + \mathbf{IV}) = 80:20$	157, 75
A		DMD, acetone, 20°, 1 to 3 h	О І + П І:П = >95:<5	75
		DMD, acetone, 20°, 2 to 8 h	Т + Т I:П = 65:35	75
		DMD, acetone, 20°, 1 to 3 h	0 0 I + 0 0 П (—) I:П = >95:<5	75

	strate Conditions Product(s) and Yield(s) (%), Diastereomeric Ratio (dr) Refs
C ₁₀₋₂₀ OML ₃	1. DMD, THF/acetone, -78°, 1 min 2. NH ₄ F/H ₂ O, rt, 1 to 12 h M L ₃ I:II Na — (63) 67:33 Si Me ₃ (97) 76:24 Ti Cp ₂ Cl (54) 96:04
C ₁₀	DMD, acetone, 20°, 4 h
	DMD, acetone, -78° , 4 h $I + II$ (>95) $I:II = 84:16$ 75
	Methyl(isopropyl)dioxirane, 3-methylbutanone,
	Diethyldioxirane, $I + II$ (58) $I:II = 82:18$ 75 3-pentanone, 20°, 24 h
	Cyclohexanone dioxirane, $I + II$ (14) $I:II = 80:20$ 75 cyclohexanone, 20°, 24 h
Bu-i	DMD, solvent, rt $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bu-f	DMD, solvent, rt, 60 min CH ₂ Cl ₂ /acetone (9:1) 60 min CCl ₄ /acetone (9:1) 120 min 100 60:40 CCl ₄ /acetone (9:1) 120 min 100 54:46 Bu-t Bu-t II Solvent Solvent Solvent Solvent 94 95:5 CH ₂ Cl ₂ /acetone (1:1) 96 96:4
t-Bur.	OH OH OH OH 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Substrate	DOSELLECTIVE EL OXIDATIO	NS OF OLEFINS BY DIOXIRANES (Continued) Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
ОН		OH OH	TC10.
1-Bu	DMD, solvent, ~20°	o IV + III	87
		Solvent Time % Convn IV:V (IV+V):III acetone 4 h >95 60:40 43:57 MeOH/acetone (9:1) 2 h 60 38:62 80:20 CCL4/acetone (9:1) 12 h >95 82:18 57:43	
Bu-f	DMD, acetone, 8 h	Ви- <i>t</i> I + Ви- <i>t</i> II (82) I:II = >95:5	298
OTMS	DMD, solvent, rt, 60 min	OTMS OTMS O II + III	67
c_{11}		Solvent % Convn I:II (I+II):III acetone 100 95:5 97:3 CCL4/acetone (9:1) 86 99:1 96:4	
	TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/ H ₂ O, (pH 7-7.5), 0 to 1°, 20 min	(59) + (39) I:II = 60:40	304
	Isopropyl pyruvate, Oxone' NaHCO ₃ , CH ₃ CN/H ₂ O (pH 7-7.5), rt, 24 h	®. O. (96)	304
	DMD, acetone/CH ₂ Cl ₂ , 0°, 3 h	0 (100)	313
C ₁₁₋₁₄	DMD, acetone/CH ₂ Cl ₂ , 0°, 1 h	R^1 $I + R^2$	82
		R ¹ R ² I:II H H 31:69 Me H 23:77 H Me 55:45 Me Me 17:83 MeO Me 31:69 Me MeO 62:38 —(CH ₂) ₃ O— — —(CH ₂) ₃ O— — Me Et 70:30 Et Me 29:71	

Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
C ₁₁ NHCO ₂ Bu-t	DMD, acetone, 7 h	NHCO ₂ Bu-t NHCO ₂ Bu-t II (90) I:II = 62:38	298
C ₁₁₋₂₂ <i>t</i> -BuR ₂ Si ₁ O R ² R ¹ R ³	Ketone, Oxone®, CH ₂ Cl ₂ / MeOH, buffer (pH 11), n, 6 h O III IV O O	I - BuR ₂ Si O R ²	314
\mathtt{C}_{12}	v VI	Me Me H Me H VI (84) 22:78 Me Me H Me Me V (24) 58:22 Me Me H Me Me VI (13) 61:39 Me Me Me Me H IV (81) 32:68 Me Me Me Me H V (54) 30:70 Me Me Me Me H VI (99) 11:89 Me $n\text{-}C_5H_{11}$ H H H V (21) 26:74 Me $n\text{-}C_5H_{11}$ H H H VI (28) 25:75 Ph Me Me Me Me H VI (94) 2:98	
Ph	DMD, solvent, rt, 60 min	No Ph Ph II	67
C ₁₂₋₂₂ OML ₃ Bn	1. DMD, THF/acetone, -78°, 1 min 2. NH ₄ F/H ₂ O, rt, 1 to 12 h	HO- B_{n} I + HO B_{n} II $ \frac{M}{Na} = \frac{I:II}{Si} $ Si Me_{3} (96) 35:65 Ti $Cp_{2}Cl$ (50) 83:17	97
R ₁ R ₂ H	DMD, acetone/CH ₂ Cl ₂ , -20°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53
Ts' N	TFP, Oxone [®] , MeCN/H ₂ O, Na ₂ EDTA, 0°, 2 to 3 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	303

Su	abstrate Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr) Ref
C ₁₂₋₁₄ O NH NH O OR ²	DMD, catalyst, CH ₂ Cl ₂ , 25 ^c	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		R¹ R² Catalyst I:II H Ac Mn(TDMPP)Cl² (40) 50:50 H Ac Mn(Cl16TDMPP)Cl² (57) 90:10 Ac H Mn(TDMPP)Cl² (51) 50:50 Ac H Mn(Cl16TDMPP)Cl² (55) 17:83 Ac H Mn(Cl8TDMPP)Cl² (58) 67:33 Ac Ac Mn(TDMPP)Cl² (53) 50:50 Ac Ac Mn(Cl16TDMPP)Cl² (72) 60:40
C ₁₂ SO ₂ Ph	DMD, acetone, 8 h	SO_2Ph $I + SO_2Ph$ $II = >95:5$ 296
C ₁₂₋₂₇ OR OR OR	DMD, acetone/CH ₂ Cl ₂ , 0°, 1 h	OR O
CH N	Acetone, Oxone [®] , phosphate buffer (pH 7.2), 0°	e N I (39) + N II (27) 27:
THE	DMD (excess), acetone/ CH ₂ Cl ₂ , Ar, 0° to rt, 5 h	1 (~100)
1/1	DMD, acetone/CH ₂ Cl ₂ , Ar, 0°, 3 h	I (~100)
	DMD, acetone, 25°, 18 h	CO_2Me + O CO_2Me (70) 86
r-BuO N	DMD, CHCl3/acetone	t-BuO (90) dr >95:<5

8 <u></u>	Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
OH		Acetone, Oxone [®] , CH ₂ Cl ₂ , phosphate buffer (pH 7.5), 18-crown-6, 6 to 8°, 4 h	OH OH II (86) I:II = 71:29	302
OTBDMS		Ketone, Oxone [®] , CH ₂ Cl ₂ / MeOH, buffer (pH 11.0), KOH, rt	OTBDMS OTBDMS II	297
			Ketone Time I:II acetone 3.5 h (40) 87:13 2-methylcyclohexanone 1.5 h (77) 90:10 2,6-dimethylcyclohexanone 3.0 h (65) 93:7 one	
		Ketone, Oxone®, NaHCO ₃ , CH ₃ CN/	I + II	81
		H ₂ O, Na ₂ EDTA, rt	Ketone I:II Ketone I:II	
			MeCOMe 4.8:1 EtCOEt 6.3:1 CICH ₂ COMe 4.2:1 CICH ₂ COCH ₂ CI 3.3:1 CF ₃ COMe 5.6:1	
			5.6:1 Ph N Ph Mé Me	
			Ketone I:II Ketone I:II	
			7.0:1 Ph N Ph Ph Me Me	
			Cl 6.9:1 0 2.1:1	
			4.6:1 QO 3.1:1	
C ₁₃ BzO O		DMD, acetone	BzO - O O I + BzO - O II (-100) $I:II = 90:10$	316
R O N—Ph		DMD, acetone/solvent	R O I + O N N-Ph II	317
			R Solvent Time I:II CH ₂ OH CHCl ₃ 24 h (100) 50:50 CO ₂ Me CH ₂ Cl ₂ 3 d (96) 75:25 CH ₂ OAc CH ₂ Cl ₂ 3 d (85) 50:50	

Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
	Ethylmethyldioxirane, butan-2-one, 24 h	$R = CH_2OH$, (66) $I:II = 50:50$	317
	TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/ H ₂ O, 0°, 20 h	R = CH ₂ OH, (79-100) I:II = 75:25	317
(CO) ₃ Fe	DMD, acetone, 56°	(CO) ₃ Fe (58) dr 59:41	318
=\frac{Ph}{\logorimation}	DMD, CHCl ₃ /acetone	O Ph O (100) dr 33:33:17:17	203
NHCOPh	DMD, solvent, rt, 60 min	NHCOPh I + NHCOPh II Solvent % Convn I: II	67
		acetone 100 19:81 CH ₂ Cl ₂ /acetone (9:1) 100 4:96 CCl ₄ /acetone (9:1) 100 3:97 MeOH/acetone (9:1) 64 26:74	
Ts-N	TFP, Oxone [®] , MeCN/H ₂ O, Na ₂ EDTA, 0°, 2 to 3 h	Ts-N O I + Ts-N O II () I:II = 91:9	303
C_{16-17} R^2 N N N	1. CH ₂ Cl ₂ /MgSO ₄ 2. DMD/acetone 3. rt, 12 h	$ \begin{array}{c cccc} R^2 & & & & \\ R^1 & & & & \\ R^1 & & & & \\ \hline R^1 & & & & \\ \hline R^1 & & & & \\ \hline Ph & & & & \\ i-Pr & & & & \\ \hline PhCO (59) \end{array} $	319
C ₁₃ O N	Acetone, Oxone [®] , phosphate buffer (pH 7.2), 0°	$(76) + \bigcirc $	84 5
OMe	Acetone, Oxone [®] , phosphate buffer (pH 7.2), 0°	OMe (75)	84
CO ₂ Et	DMD, acetone	$CO_2Et + CO_2Et = 60:40$	86
C ₁₃₋₁₉ OOSIR ₂ S	DMD, acetone/CH ₂ Cl ₂ , 0°, 40 to 90 min	O = Ph, i-Pr $O = S = solid support$	93

	Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
	OTBDMS	Ketone, Oxone [®] , NaHCO ₃ , CH ₃ CN/ H ₂ O, Na ₂ EDTA, rt	OTBDMS OTBDMS OTBDMS I + OTBDMS	81
			Ketone I:II Ketone I:II O O O	
			14.2:1 Ph N Ph Me Me	
			16.7:1 PH N Ph Ph Mé Me	
			10.4:1 Q 4.3:1	
			0 6.4:1	
	TBDMSO	DMD, CHCl ₃ /acetone	TBDMSO (93) dr 60:40	203
	TMS	DMD, acetone, rt, 4 to 10 h	TMS. $(30) + O$ $(50) + O$ TMS. $(30) + O$ $(50) + O$	74
C ₁₄			(20) I:H = 38:62	
	Bn	DMD, CH ₂ Cl ₂ /acetone, rt	Bn N O I (-)	287
	Bn N O	DMD, acetone/CH ₂ Cl ₂ , rt	I + O (-)	287
	OBn	DMD, acetone/CH ₂ Cl ₂ , 0°, 1 h	OCO OBn (-)	95
	OH OH CO ₂ Me	DMD, acetone/CH $_2$ Cl $_2$, N $_2$, π , 4 h	OH OO ₂ Me () dr 50:50	320

Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
OH O	DMD, CH ₂ Cl ₂ , acetone, 0°, 80 min	OH O (-)	94
HN OH SMe	DMD, acetone, Ar, rt, >16 h	OH (43)	308
CO ₂ Me	DMD, acetone	CO_2Me I + (50-60) I:II = 75:25	86
	DMD, acetone, 25°, 18 h	CO ₂ Me + other diastereomers (100) dr 45:33:11:11	86
r-But OTMS	DMD, acetone/CH ₂ Cl ₂ , 0°, 1 h	$_{t-Bu}$ $_{OH}$ $_{t-Bu}$ $_{OH}$ $_{I:II}$ = 40:60	82
C ₁₅₋₂₅ OML ₃	1. DMD, THF/acetone, -78°, 1 min 2. NH ₄ F/H ₂ O, rt, 1 to 12 h	O OH I + OH II M L ₃ I:II Na - (37) 90:10 Si Me ₃ (85) >98:<2 Ti Cp_2Cl (53) >98:<2	97
C ₁₅ (CO) ₃ Fe	DMD, acetone, 56°	(CO) ₃ Fe (11) dr 50:50	318
OH OH	DMD, acetone, 15 h	$O \longrightarrow O \longrightarrow$	321
EtO N CO ₂ Me	DMD, acetone, rt, 4 h	EtO CO_2Me (63)	322
X	DMD, acetone, 45 min	× (84)	323

Substrate	Conditions	NS OF OLEFINS BY DIOXIRANES (Continued) Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
NMe [‡] ArSO ₃ -		NMe‡ ArSO3 ⁻ NMe‡ ArSO3 ⁻	
$Ar = 4-ClC_6H_4$	DMD, acetone/CH ₃ CN, 20°, 48 h, 100% convn	о I + О II (—) I:II = 80:20	324
O HOO	DMD, acetone, 0°, 20 min	(89) + OHOO (-)	325
	DMD, acetone, rt, 20 h	(50) + (45)	326
MeO H Bu-r	DMD, acetone, 18 h	MeOW HO (98)	321
C_{16-19} $R_{R^2}^{2}$ R^1	DMD, acetone, 20°, 24 h	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99
		R1 R2 % Convn I:II Ph H >95 83:17 Bn H 88 91:09 Bn Me 95 90:10	
C ₁₆	DMD, acetone, rt, overnight	I I:II = 86:14	327
OMOM	Acetone, Oxone [®] , phosphate buffer (pH 7.2), 0°	О ОМОМ (68) + О ОМОМ (—) I I:II = 93:7	84
OSi(Pr-f) ₃	DMD, acetone/CH ₂ Cl ₂	OSi(Pr-i)3	328
N(CO ₂ Bu-r) ₂	DMD, acetone, 3 h	$N(CO_2Bu-t)_2$ $N(CO_2Bu-t)_2$ $II (88) I:II = 75:25$	298

Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
C ₁₇₋₁₈	DMD, acetone/CH ₂ Cl ₂ , 0°, 2.5 h	I + OH II	329
OH OH	1. DMD, acetone/MeOH, 0°, 4 h 2. rt, 2 h	NH NNN NOH OH	61a
O ₂ CBu-t	TFP, Oxone [®] , MeCN/H ₂ O, Na ₂ EDTA, 0°, 2 to 3 h		303
TBDMSQ O OTBDMS	DMD, acetone, rt, 3 d	TBDMSQ TBDMSQ II (93) OTBDMS OTBDMS TBDMSQ II (93) OTBDMS	330 :28
C ₁₈ O Ph OAc SMe	DMD, acetone, Ar, rt	OAc (97)	308
OAC ACO OCC OCC OCC OCC R1	DMD, acetone	AcQ OAc O I +	331
		AcQ OAc OAc R1	
C ₁₉		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
OBn OBn	DMD, acetone/CH ₂ Cl ₂	OBn OBn I + OBn II () I:II = 80:20	328

Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
OMe MeO ₂ C	DMD, acetone/CH ₃ CN, N ₂ , 0°, 36 min	OMe (99) MeO ₂ C	332
OTBDMS Ph	DMD, acetone/CH ₂ Cl ₂ , 0°, 1 h	OTBDMS Ph OTBDMS Ph I + O OTBDMS Ph II (90) I:II = -50	91 :50
OTBDMS H-Ph	DMD, acetone/CH ₂ Cl ₂ , 0°, 1 h	OTBDMS H OPh (98)	91
C ₂₀₋₂₄ CBz	1. DMD, acetone/ MeOH, rt 2. NaBH ₄ , AcOH, 25°, 3 h	P	333
OTiCp2CI	1. DMD (1.6 equiv), acetone/THF, -78°, 108 s 2. NH ₄ F, H ₂ O, 20°, 2 to 3 h	OH H + OH OH (78) I:II = 94:6	311
ОМе	1. DMD (2 equiv), acetone/THF, -78°, 108 s 2. NH ₄ F, H ₂ O, 20°, 2 to 3 h	I + II (79) I:II = 96:4 ΟΜε	311
ОНОН	DMD, acetone/CH ₂ Cl ₂ , 0°	O CHO OMe (29)	96
OSiEt ₃	DMD, acetone/CH ₂ Cl ₂ , 0°	OSiEt ₃ OSiEt ₃ OSiEt ₃ I + II (>99) I:II >95:5	90
C ₂₁ .H	TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, Na ₂ EDTA, 25°, 4 h	H (70)	334

*	Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
OBn OMe OBn		DMD, acetone/CH ₂ Cl ₂ , 0°, 30 min	OBn OBn OBn OBn I: $\Pi = 15:1$	335
TBDPSOO		DMD, acetone/CH ₂ Cl ₂ , 0°, 40 min	TBDPSO OH $I + I = 9:1$	336
C ₂₁₋₂₇ O OSiR ₂ (OOH O	3	DMD, acetone/CH ₂ Cl ₂ , 0°, 40 min	O OSiR ₂ \bigcirc	93
C ₂₁		DMD, acetone, CH ₂ Ci ₂ , 20°, 20 h	I + II (90) I:II = 80:20	258
O ₂ CBu-t O ₂ CBu-t		TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, Na ₂ EDTA, 8°, 15 min	O ₂ CBu-t I I I:II = 75:25	35
C ₂₂₋₂₄	R ¹	DMD, acetone/CH ₂ Cl ₂ , ~20°	R1 R2 Time H Br 408 h (82) H Cl 408 h (86) H H 240 h (79) H CN 552 h (80) Me H 312 h (75) H Me 216 h (86) MeO H 312 h (73) H MeO 144 h (78) H EtO 168 h (79)	337
O Ph		DMD, acetone/CH ₂ Cl ₂ , ~20°	R Time I II Br 432 h (19) (0) C1 432 h (15) (0) H 336 h (15) (10) Me 228 h (21) (0) E1O 336 h (0) (14)	337

Substrate	Conditions	NS OF OLEFINS BY DIOXIRANES (Continued) Product(s) and Yield(s) (%), Diastereomeric Ratio (dr) Refs.
C ₂₃₋₂₃ O Ph	TFD, TFP/CH ₂ Cl ₂ , -20°, 5 to 8 h	O O Ph $R = Cl, H, Me$ 337
Phr N O C ₆ H ₄ OMe-4	DMD, acetone/CH ₂ Cl ₂ , 0°	Ph
OMe	TFD, TFP/CH ₂ Cl ₂ 20°, 5 min	OMe I + OME II (92) 222 I:II = 50:50
OMe OH OAc	DMD, acetone/CH ₂ Cl ₂ , 0°	OMe OH OAc (100) 96
C ₂₃ OTBDPS	DMD, acetone/CH ₂ Cl ₂ , 0° to rt, 1 h	O. OTBDPS () 339
Aco	DMD, acetone, -40°, 12 h	I + II (88) 258 I:II = 60:40
AcO H H H	DMD, acetone	OAc (90)
OSi(Pr-i) ₃ OH OO	DMD, CH ₂ Cl ₂ , acetone, 0°, 30 min	OSi(Pr-i) ₃ OH OOO (>48) 94
C ₂₄ TBDPSQ	DMD, CHCly/acetone	TBDPSQ 0 (100) dr 52:48 203
OTBDMS OTBDMS OTBDMS	DMD, acetone/CH ₂ Cl ₂ , 0°, 1 h	OTBDMS OTBDMS (98) 91

Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
C ₂₅ OTMS OTBDPS	DMD, acetone/CH ₂ Cl ₂ , 0°, 30 min	OTBDPS ()	336
OBn O Ph	DMD, acetone	OSDn OBn OBn $I \leftarrow O$ Ph I	341
OBz MeO ₂ C	DMD, acetone, N ₂ , rt, 30 min	OBz MeO ₂ C (65)	142
MOMO HOOTBDPS	1. DMD, acetone, 3 h 2. Et ₃ N, CH ₂ Cl ₂ , 12 h	MOMQ (—) OTBDPS	342
C ₂₆₋₃₃ AcQ OAc OR H OAc	DMD, acetone/CH ₂ Cl ₂ , rt, 36 h	AcQ OAc AcQ OAC III	343
		R I:II H (66) 67:33 CF ₃ CO (72) 50:50 Ac (86) 67:33 Piv (63) 33:67 Et ₃ Si (86) 20:80 TBDMS (69) 17:83 PhCO (77) 67:33	
HO. TO N	TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, Na ₂ EDTA, 0°	HO. S I +	344
O		HO. O IIII) (45); II(I) (2	8)

efs

TFP, Oxone[®], NaHCO₃, CH₃CN/H₂O, Na₂EDTA, 0°

DMD, acetone/CH₂Cl₂, 0°

TFP, Oxone[®], NaHCO₃, CH₃CN/H₂O, Na₂EDTA, 0°

TFP, Oxone®, NaHCO₃, CH₃CN/H₂O, Na₂EDTA, 0°

Substrate

Conditions

Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)

Refs.

DMD, acetone/CH₂Cl₂, 0°

TFP, Oxone[®], NaHCO₃, CH₃CN/H₂O,

Na₂EDTA, 0°

I(II)(45) + II(I)(35)

344

TFP, Oxone[®], NaHCO₃, CH₃CN/H₂O, Na₂EDTA, 0°

C₂₇

DMD, acetone/CH₂Cl₂, 0°, 1 h

DMD, acetone/CH₂Cl₂, 0°

$$B_{nO}$$
 OB_{n}
 OB_{n}

Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
OBn OBn OBn	DMD, acetone/CH ₂ Cl ₂ , 0°, 6 min	OBn OBn I (96)	347
	DMD, acetone/CH ₂ Cl ₂ , 0°, 10 min	I (—)	348
C ₂₇₋₃₃	DMD, acetone/CH ₂ Cl ₂ , N ₂ , 0°, 15 min	I (—)	349
OHOOOHOOO	DMD, acetone/CH ₂ Cl ₂ , 0°, 40 min	O OSiR _T \bigcirc OOHO O \bigcirc (—) R = Ph, i-Pr \bigcirc \bigcirc solid support	93
HO OH O	DMD, acetone/CH ₂ Cl ₂ , -50°	HO OH O	350
HO S S S S S S S S S S S S S S S S S S S	TFP, Oxone [®] , NaHCO ₃ , CH ₃ CN/ H ₂ O, Na ₂ EDTA, 0°	HO S II (75) I:II = 83:17 HO O N I + HO N II (86)	350
Lio	DMD, acetone/THF, Ar, -78°, 10 min	HO (60) dr 67:33	209

	Substrate	Conditions	NS OF OLEFINS BY DIOXIRANES (Continued) Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
C ₂₇₋₃₄		TFD, CH ₂ Cl ₂ /TFP, -40°, 1 h	RO R	351
C ₂₇		DMD, acetone, 20°, 20 h	I + II (80) I:II = 75:25	258
но	OH OH	Oxone [®] , acetone/CH ₂ Cl ₂ , phosphate buffer (pH 7.5), 18-crown-6, 6 to 8°, 4 h	I + II (50) I:II = 22:78	302
но		Sulfonylazole, H ₂ O ₂ , acetone, THF, NaOH, 10°, ~3 h	HO HO THO	271
но		Ar-S-NN III: Ar = 4-MeC ₆ H ₄ IV: Ar = 4-O ₂ NC ₆ H ₄ 4-MeC ₆ H ₄ S-NN V 2,4,6-(Me) ₃ C ₆ H ₂ NN VI Acetone, Oxone [®] , NaHCO ₃ , H ₂ O, 10°, 6 h Ketone, Oxone [®] , CH ₂ Cl ₂ / phosphate buffer (pH 7.5 Bu ₄ NHSO ₄ , 0 to 5°	D2 III 100 (31) 41:59 IV 1 (54) 75:25 IV 4 (54) 56:44 IV 20 (52) 45:55 V 20 (92) 82:18 VI 4 (34) 76:24 VI 20 (18) 70:30 VI 20 (96) 91:9 I + II (72) I:II = 44:56	271 352
			2-methylcyclohexanone (70) 35:65 2-hydroxy-2-methylcyclohexanone (37) 40:60 ethyl pyruvate (83) 64:36	

Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)

Refs.

C₃₄₋₃₅ OBz OBz OBz

DMD, acetone/CH₂Cl₂, N₂, -20°, 2 h

DMD, acetone/CH₂Cl₂, -30°, 24 h

DMD, acetone/CH₂Cl₂, N₂, -78 to -20°, 5.5 h

DMD

DMD, acetone/CH₂Cl₂, rt, 36 h

_	Substrate	Conditions	Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)	Refs.
C ₃₇	OTBDMS		OTBDMS	
	TBDMSO C ₁₃ H ₂₇ -n	DMD, acetone/solvent	TBDMSO C ₁₃ H ₂₇ -n I +	363
			OTBDMS	
			TBDMSO C ₁₃ H ₂₇ -n	
			Solvent Temp Time I I:II	
			— n 24 h (56) 80:20	
			- 4° 72 h (57) 84:16 23° 96 h (tr) 87:13	
			hexane rt 24 h (16) 58:42	
			MeOH rt 24 h (tr) —	
			CH ₂ Cl ₂ rt 24 h (30) 71:29 CHCl ₃ rt 24 h (tr) —	
			CCl ₄ rt 24 h (58) 80:20	
		Ethylmethyldioxirane, 2-butanone, rt, 96 h	I (47) + II (→) I:II = 82:18	363
C ₄₀		Ethylmethyldioxirane, 2-butanone, 4°, 96 h	I + II (tr) $I:II = 72:28$	363
C40	OAc OAc OTBDPS	DMD, acetone/CH ₂ Cl ₂ ,	OAC OAC O OTBDPS	339
	AcNH O O O	0° to rt, 1 h	Aco (-)	339
C ₄₀	O_{O} OSi(Pr- i) ₂ \bigcirc \bigcirc S = solid suppor	t	O OSi(Pr-i)2-(\$)	
	OH OO OH OO	DMD, CH ₂ Cl ₂ /acetone, 0°	OH OO OH 2 (-)	93
C ₄₅			TBDMSO	
	TBDMSO OBn	DMD, acetone/CH ₂ Cl ₂ , 0°	TBDMSO HO I +	264
	TBDMSO HO OBn	DMD, actional Ch ₂ Ch ₂ , 0	BnO	364
			OBn (84) $I:II = 1:5$	
			TBDMSO BnQ TBDMSO O OBn II	
C ₄₈			100~	
- 40	Et ₃ SiO OSiEt ₃ OSiEt ₃		Et ₃ SiO OSiEt ₃ OSiEt ₃	
	Et ₃ SiO Et ₃ SiO OSiEt ₃	DMD, acetone, 0°	Et ₃ SiO O O (-) Et ₃ SiO OSiEt ₃	365
C ₅₀	OP-			
	OBn		OBn	
	BnO	D. C.	BnO O	923
	AcO	DMD, acetone/CH ₂ Cl ₂ , N ₂ , 0°, 30 min	Act (>51)	366
	BnO	12 6 TO 87 1 TO 12	Bno	
	BIIO		BnO	

Substrate Conditions Product(s) and Yield(s) (%), Diastereomeric Ratio (dr) Refs. OBn BnO AcO DMD, acetone/CH₂Cl₂, (>43) 366 N₂, 0°, 30 min 1. DMD, acetone/CH₂Cl₂, OTBDMS 0°, 1 h OTMS (71) 367 2. Camphorsulfonic acid, acetone, 4°, 16 h DMD, acetone/CH₂Cl₂, 95 0°, 45 min DMD, acetone/CH₂Cl₂, 95 N₂, 0°, 45 min C₁₈₇ 1. DMD, acetone/CH₂Cl₂, molecular sieves 4 Å, 45 min 2. EtSH, CF₃CO₂H, CH₂Cl₂, -78° to rt, 6 h 3. Ac₂O, CH₂Cl₂, pyridine, 24 h ОВz

TARLE 4 DIASTER	FOSEL ECTIVE EPOXIC	ATIONS OF OLEFINS I	BY DIOXIRANES (Continued)

Substrate

Conditions

Product(s) and Yield(s) (%), Diastereomeric Ratio (dr)

Refs.

 $^{{}^\}sigma TDMPP$ is the diamion of 5,10,15,20-tetrakis(2,6-dimethoxyphenyl)porphyrin.

 $[^]b$ C116TDMPP is the diamon of 2,3,7,8,12,13,17, 18-octachloro-5,10,15,20-tetrakis(3,5-dichloro-2,6-dimethoxyphenyl) porphyrin.

 $^{{}^}cCl8TDMPP\ is\ the\ diamion\ of\ 5,10,15,20-tetrak is (3,5-dichloro-2,6-dimethoxyphenyl) porphyrin.$

TABLE 5. ENANTIOSELECTIVE EPOXIDATION OF OLEFINS BY ENANTIOMERICALLY ENRICHED DIOXIRANES

Substrate Ketone/Catalyst Conditions Product(s), Yield(s) (%) and Enantioselectivities (ee)Refs.

C₆₋₁₅

Oxone®, K₂CO₃, DMM/
CH₃CN, buffer
(pH 9.3), Bu₄NHSO₄
R

1 149a

 $n \quad R^1 \quad R^2$ R³ Temp Time H -10° 3 h (82) 2 H Et Me -10° 3 h (83) 1 H Et H -10° 3h (68) 91 1 H n-Pr 1 H -(CH₂)₄-- -10° 3 h (92) 92 1 H Ph H -10° 3 h (85) 94 2 H Ph H 0° 2 h (90) 1 H Bn H -10° 2 h (45) $2 \quad H \quad \textit{n-}{\rm C_6H_{13}\ H} \quad -10^{\circ} \quad 2\ h \quad (86) \quad 90$ 3 H Bn H 0° 2h (87) 91 1 Ph Ph H 0° 2h (87) 94

 n
 R1
 R2
 R3
 Time
 % ee

 Oxone®, K2CO3, DME, buffer (pH 9.3), Bu4NHSO4, -15°
 I
 1
 H
 Et
 Me
 5 h
 (85)
 92
 149a

 I
 H
 -(CH2)4 5 h
 (93)
 94

 I
 H
 Bn
 H
 7 h
 (43)
 92

 I
 H
 Ph
 Me
 5 h
 (75)
 74

 2
 H
 n-C6H13 H
 5 h
 (83)
 91

Substrate	Ketone/Catalyst	Conditions	7/40/2 TO 10 YE	on which the s	Chawca traceas	and Enanti	- 17/05/41	hadray - 15 W	vicus totrano
C ₆₋₂₄	X	Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, 0°, 2 h	R^2 Q						117
			R ¹	R ²	R ³			% ее	
			n-Pr	Н	CH ₂ C		(60)	78	
			Et	Н	(CH ₂)		(70)	70	
			Ph	Н	CH ₂ C		(61)	93	
			Ph Ph	H H	CH ₂ O Me	n	(81) (60)	88 84	
			Ph		CH ₂) ₄ —	• 2.	(69)	91	
			n-Pr	н		TBDMS	(80)	93	
			Et	н		OTBDMS		87	
			Ph	H	Ph		(73)	95	
			n-C ₆ l	H ₁₃ H	n-C ₆ F	I ₁₃	(81)	90	
			Ph	Me			(73)	92	
			Ph	H	07700	TBDMS	(74)	93	
			Ph	Ph	n-C ₁₀	H ₂₁	(65)	92	
c_7	100	Oxone [®] , CH ₂ Cl ₂ /buffer, Bu ₄ NHSO ₄ , 25°		(o 1	(87)) 6% ee			105
		Oxone [®] , CH ₂ Cl ₂ /buffer, Bu ₄ NHSO ₄ , 5°	I (80)	12% ee					105
	Ph	Oxone [®] , CH ₂ Cl ₂ /buffer, Bu ₄ NHSO ₄ , 5°		≤ 0 (8	35) 5%	ee			105
C ₇₋₂₄ R ² R ³		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer (pH 10.5)	RI F	Y I	R ²			% (
				Me		(CH ₂) ₄ —	(7		
				Me Ph	M		(3:		
				Ме	M		(8)		
				Ph		(CH ₂) ₄ —	(94		
			E	EtO ₂ C(C	H ₂) ₂ M				
					H ₂) ₂ M				
					M		H ₂₁ (9		
				Ph St	Me		(89 H ₂₁ (94		
				eh Ph	Et Ph		(54		
				Ph .	Ph		H ₂₁ (9)		
	, l	Oxone®, K2CO3, DME							
	\searrow	(DMM), K ₂ CO ₃ /AcOH	1						115,
	0	buffer (pH 10.5)		R ²	R ³	Temp Tin		% ee	
	$\stackrel{\longleftarrow}{\longrightarrow}$	-		—(CH ₂)		-15° 41			-
	но				H	-15° 41			
					CH ₂ Cl	0° 61			
				H (CH ₂ Cl	–10° 6 h	(95) 84	
					Me	-15° 41			
					MeCO	0° 81			
					CO ₂ Me	0° 81	100000		
				—(CH ₂) —(CH ₂)		-15° 4 h			
					i-PrCO	0° 81			
					Ph	-10° 6 h			
					PhCO	0° 61			
			Ph	Ph 1	Ph	0° 61			

TABLE 5. ENANTIC	DSELECTIVE EPOXIDATION O	CTIVE EPOXIDATION OF OLEFINS BY ENANTIOMERICALLY ENRICHED DIOXIRANES							
Substrate	Ketone/Catalyst	Conditions	Product(s), Yie	ld(s) (%) and	Enantioselec	tivities	(ee)Re		
OH		Oxone [®] , CH ₃ CN/DMM, K ₂ CO ₃ /AcOH buffer, -10°	ОН	(83) 92% ee			12		
cı Cı		Oxone [®] , NaHCO ₃ , cO CH ₃ CN/H ₂ O, EDTA, rt, 60 min	a	O (83) 184	% ee		24		
R^2 R^3	Fo	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/H ₂ O, 0°	$R^2 \stackrel{O}{\underset{R^1}{\longrightarrow}} R^3$	n² n³			11		
			R ¹ 4-CIC ₆ H ₄	R ² R ³	Tim 30 h	(55)	% ee		
				H Me		(80)			
			Ph	H CH ₂ O					
			Ph	—(CH ₂) ₄ —	4 h	(78)	59		
				H (CH ₂): H Ph		(72) (46)			
Ph	X° T R°	Oxone®, K ₂ CO ₃ , DME,	Ph O I				1		
	, oo ,	K ₂ CO ₃ /AcOH buffer					1		
	O		R	Temp 7	Time % Con	vn % e	e		
			Н		6 h 13	67			
			CH ₂ F		4 h 76	67			
			CO ₂ Me		4h 90	67			
			CH ₂ OAc CMe ₂ OH		4h 96 4h 79	65 69			
			CMe ₂ OMe		4h 100	70			
			CH ₂ OTBDMS		4 h 100	66			
			CH ₂ OBz		4 h 99	65			
			CH ₂ OTs	-10°	4 h 70	67			
			CPh ₂ OH	-15°	1 h 7	59			
	R								
	O Et	Oxone®, K ₂ CO ₃ , DME/	R	% Conv					
	A L	DMM, K ₂ CO ₃ /AcOH buffer, -15°, 4 h		₂ Me 94 ₂ OAc 66	60 67		1		

Substrate	Ketone/Catalyst	Conditions	P	roduct(s), Yield(s	s) (%)	and Enanti	oselectivi	ties (ee	Refs.
	\mathbb{R}^2	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h			R1 Me —(CH2) Et —(CH2)	Et	% Convn 38 39 42 42	% ee 38 37 42 36	T Act of	119
	0				n-Pr Ph Bn	n-Pr Ph Bn	29 30 6	43 20 21		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Oxone [®] , K ₂ CO ₃ , CH ₃ CN Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	I, I							119
		_ F	R ¹	R ²	R ³	R ⁴	R ⁵	% Convn	% ее	
			Me	Me	Me	Me		8	32	
			Me	Me	Me	Me		100	15	
			Me	Me	Et	Н	Н	79	10	
			Me	Me	i-Pr	Н	Н	60	7	
			Me	Me H ₂) ₄ —	—(CI	H ₂) ₄ — Me	H H	100 92	18 27	
			Me	Me	Et	Et	н	92	16	
			Et	Et	Me	Me		77	12	
			Me	Me		H ₂) ₅ —	н	77	17	
				H ₂) ₅ —	Me	Me		93	16	
				H ₂) ₄ —		H ₂) ₄ —	н	100	30	
			Et	Et	Et	Et	н	26	12	
		-	-(C	H ₂) ₅ —	—(CI	H ₂) ₅ —	н	59	14	
			-(C	H ₂) ₆ —	—(CI	H ₂) ₆ —	H	43	17	
		N	Me	Me	Bn	Bn	Н	6	3 (S)	
æ	Et O ROY	Oxone [®] , K ₂ CO ₃ , DME/ DMM, K ₂ CO ₃ /AcOH buffer, -15°, 4 h	I		R CO ₂ M CH ₂ O ₂ CMe ₂ O	e 7	7 65 00 62 00 65			115, 114
	OR CI	Oxone [®] , K ₂ CO ₃ , CH ₃ CN Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	i,		H Ac TBDM	% Cor 0 5 S 0	- 23	•		119
	OR	Oxone [®] , K ₂ CO ₃ , CH ₃ CN Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	1, I		R Me (CH	% I ₂) ₂ Cl		% ee 27 29		119

Substrate	Ketone/Catalyst	Conditions	Produ	uct(s)	, Yield(s) (%)	and E	nantio	selectiv	rities (e	e)Refs
	X	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	Ι (40)	10% c e						119
	top	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	Ι (41)	15% ee						119
C ₈₋₁₀	X	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, -10°, 2 h	R ² C	1	I	R ¹ Ph Ph i-Pt ₃ S n-C ₈ H		Me H	(64) (81) (92)	6 ee 14 28 35 27	25
		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, -10°, 2 h			2	R ¹ Ph Ph i-Pr ₃ S n-C ₈ H	iCH ₂	R ² H Me	(90) (95) (99)	% ee 24 20 31 17	25
C ₈₋₂₀ R ³		Oxone [®] , K ₂ CO ₃ , DME (DMM), K ₂ CO ₃ / AcOH buffer	R ² O	,R ³	1						115, 114
	AcO	R ¹ Ph Ph Ph Ph Ph Ph n-C ₈ H ₁	7	H H H Me H	R ³ H CH Me H CO	₂CI	Temp -10° 0° -15° -10° -10°	Time 4 h 5 h 4 h 3 h 4 h 8 h	(90) (94) (92) (92) (85) (34)	77 75 52 15	
		2-Naphi Ph (CH ₂) ₂ (Ph n-C ₆ H _{1:} Ph Ph	CO ₂ Me		H CH ₂) ₄ — C ₆ F Ph n-C PhC	- I ₁₁ 6H ₁₃	-10° -10° -10° -10° 0°	4h 4h 4h 6h 4h 5h	(89) (95) (96) (95) (51) (80) (86)	68 43 90 42 94	
	F-H	Oxone [®] , NaHCO ₃ , MeCN, EDTA, H ₂ O	I	R ¹ Ph Ph Ph	H H —(CH H Me	Ph	Me 2	Time <2 h 24 h <6 h <3 h <4 h	(33) (33) (97) (88)	% ee 29 64 69 76	108
				Ph Ph	Ph	Ph Ph		<4 h	(100) (100)	73 83	

Substrate	Ketone/Catalyst	Conditions	Product(s), Yield(s) (%) and Enantioselectivities (ee)	Refs
C8	X	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, K ₂ CO ₃ /AcOH buffer, -10°, 3 h	(75) 94% ee	123, 124
C ₈₋₁₁		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, K ₂ CO ₃ /AcOH buffer	H -10° 3 h (78) 93 1	123, 124
C ₈₋₁₄ OR OR		Oxone [®] , CH ₃ CN (DMM), Na ₂ B ₄ O ₇ (or K ₂ CO ₃ / AcOH) buffer, 0°		121
Co ₂ Et		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer (pH 10.5), EDTA, 0°, 4 h		122
		Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, -10°, 2 h	O I (50) 56% ee	25
		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, -10°, 2 h		25
		Oxone [®] , K ₂ CO ₃ , DME, K ₂ CO ₃ /AcOH buffer, -10°		115 114
	Q	0.4	CH ₂ OTBDMS 6 h 70 73 CH ₂ OBz 6 h 67 71 CH ₂ OTs 6 h 62 71 CPh ₂ OH 6 h 7 88	
	R = CH ₂ OAc	Oxone [®] , K ₂ CO ₃ , DME, K ₂ CO ₃ /AcOH buffer, -10°, 6 h		115

Substrate Ketone/Catalyst Conditions Product(s), Yield(s) (%) and Enantioselectivities (ed

Ketone/Catalyst	Conditions	Product(s), Yield(s) (%)	and Ena	ntioselectiv	ities (e	e)Refs.
Et O O	Oxone [®] , K ₂ CO ₃ , DME, K ₂ CO ₃ /AcOH buffer, -10°, 6 h	1	R % C CO ₂ Me 4 CH ₂ OAc 7 CMe ₂ OH 4	3 6	ee 5 2 4		115, 114
O Et	Oxone [®] , K ₂ CO ₃ , DME, K ₂ CO ₃ /AcOH buffer, -10°, 6 h	1	R % Co CO ₂ Me 50 CH ₂ OAc 70 CMe ₂ OH 6	9 (6 ee 61 63 42		115, 114
OAC CI	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	, I (8) 44	% се				119
O OR	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	. 1	R % Co Me 13 (CH ₂) ₂ Cl 9		6 ee 42 41		119
	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	, I (0)					119
R^2	Oxone [®] , K ₂ CO ₃ , CH ₃ CN Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	, 1	R ¹ R ² Me Me —(CH ₂) ₄ — Et Et —(CH ₂) ₅ — n-Pr n-Pr Ph Ph	% Con 30 29 24 31 13 8	60 57 49 52 46 4		119
R^3 Q R^5 Q Q R^2 Q		I R1 R2 Me Me Me Me Me Me Me Me	: Me Me : Et H : i-Pr H : —(CH ₂) ₄ — - Me Me	н н н	% Convn 23 53 55 55 56 57 19	% ee 12 51 42 43 48 49 43	119
		—(CH ₂) ₅ — —(CH ₂) ₄ — Et Et —(CH ₂) ₅ — —(CH ₂) ₆ —	- (CH ₂) ₅ — Me Me - (CH ₂) ₄ —	н н н н н	24 46 50 73 17 43 6	55 46 52 47 47 44 51	

Substrate	Ketone/Catalyst	William War 12	Product(s), Yield(s) (%) and Enantioselectivities (e	45 M. (2012)
	1000	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	O (46) 71% ee	119
ОН		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer (pH 10.5), EDTA, 0°, 1.5 h	OH (68) 90% ee	122
C ₅ H ₁₁ -n	CF ₃ OMe	Oxone [®] , CH ₂ Cl ₂ /H ₂ O (pH 7.5), Bu ₄ NHSO ₄ , 2 to 5°, 48 h	C ₅ H ₁₁ -n (70) 20% ee	106
	MeQ CF ₃	Oxone [®] , CH ₂ Cl ₂ /H ₂ O (pH 7.5), Bu ₄ NHSO ₄ , 2 to 5°, 48 h	O C ₃ H ₁₁ -n (68) 18% ee	106
C ₉₋₂₈	X	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA	R^{2}	25
C ₉		Ph Ph 2-MeC ₆ H ₄ 2-MeC ₆ H ₄ n-Pr Et Bn Ph Ph n-C ₆ H ₁₃ Ph	4 i-Pr 2 h -10° (78) 96 CH ₂ OTBDMS 2 h -10° (83) 95 (CH ₂) ₂ OTBDMS 2 h -10° (85) 93 (CH ₂) ₂ CO ₂ Me 1.5 h 0° (68) 92 Ph 0.5 h 20° (85) 98 Ph 1.5 h 0° (78) 99 n-C ₆ H ₁₃ 2 h -10° (89) 95 CH ₂ OTBDMS 1.5 h 0° (71) 95 CH ₂ OTr 1.5 h 0° (55) 94	
Ph	100	Oxone [®] , CH ₂ Cl ₂ , buffer, Bu ₄ NHSO ₄ , 5°	I (60) 12% ee	105
	Ph	Oxone [®] , CH ₂ Cl ₂ , buffer, I Bu ₄ NHSO ₄ , 5°	I (85) 9.5% ee	105
	CF ₃	Oxone [®] , CH ₂ Cl ₂ /H ₂ O (pH 7.5), Bu ₄ NHSO ₄ , 2 to 5°, 40 h	(71) 13% ec	106
	CF ₃ ,OMe	Oxone [®] , CH ₂ Cl ₂ /H ₂ O (pH 7.5), Bu ₄ NHSO ₄ , 1 2 to 5°, 42 h	I (61) 18% ee	106

Substrate	Ketone/Catalyst	Conditions	Product	(s), Yield	d(s) (%	b) and E	Enantiosele	ectivities (ee	Refs.
		Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, π, 1 h	I (61) 29% ee						112
	X	H ₂ O ₂ , CH ₃ CN, K ₂ CO ₃ buffer, EDTA, 0°, 7 h	I (84)	92% ee					368
	0 0	Oxone®, NaHCO3,		Time		% ee			
	· ONLY	CH ₃ CN/H ₂ O,	I	1 h	(31)	>95			25
	XI Ja/	EDTA, 0°		2 h	(39)	>95			
	7 00 00			4 h 8 h	(40) (47)	89 85			
		220			080.0000				
	1 -9/	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/		Temp	_	Convn			25
	Vo-1-0/	DMM, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA	1	–11° –6°		99 97	96 95		۵
	Vo-Vo	NazeDIA		–0 –2°		98	95		
				2°		99	95		
				8°		99	94		
				20°		99	93		
				30°		97	91		
	0 -0	Oxone®, K2CO3, solvent,							
	X	Na ₂ B ₄ O ₇ buffer, EDTA	1						25

Solvent	Time	Temp	% Convn	% ee
CH ₃ CN	20 min	20°	100	89
CH ₃ CN	1.5 h	0°	96	92
EtCN	1 h	20°	11	80
DMM	1 h	20°	36	91
DME	20 min	20°	100	89
DME	1.5 h	0°	92	89
DMF	20 min	20°	95	86
Dioxane	20 min	20°	100	86
Dioxane	1.5 h	0°	96	86
THF	1 h	20°	18	74
Et ₂ O	1 h	20°	0	-
CH ₂ Cl ₂	0.5 h	20°	<3	_
CH3CN/DMM (2:1)	20 min	20°	100	90
CH3CN/DMM (2:1)	1.5 h	0°	100	92
CH3CN/DMM (1:1)	20 min	20°	98	91
CH ₃ CN/DMM (1:1)	1.5 h	0°	100	93
CH ₃ CN/DMM (1:2)	20 min	20°	94	92
CH ₃ CN/DMM (1:2)	1.5 h	0°	88	94
CH ₃ CN/DMM (1:4)	1.5 h	0°	77	94
DMM/DME (1:1)	25 min	20°	66	92
CH ₃ CN/DMM/DME (1:1:2)	20 min	20°	100	90
CH ₃ CN/DMM/DME (1:7:7)	20 m in	20°	89	90
CH3CN/THF (1:1)	25 min	20°	63	82
Et ₂ O/CH ₃ CN (1:1)	25 min	20°	28	84

Substrate

Ketone/Catalyst	Conditions	Pr	oduct(s),	Yield(s) (%) and	Ena	ntioselecti	vities (ec	e)Refs.
Me, , Me N CF ₃ SO ₃	Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, 0°, 5 h	I	21% cor	ıvn					107
\times	Oxone [®] , K ₂ CO ₃ , DME, K ₂ CO ₃ /AcOH buffer, -15°	I	CH ₂	₂ F ₂ Me ₂ OAc ₂ OH ₂ OMe	Time 4 h 4 h 4 h 4 h 4 h 4 h 4 h	%	29 78 61 95 97	% ee 73 73 75 75 80 80	115, 114
Q I	Owen & K. CO. DME		CH ₂ CH ₂	2OTBDMS 2OBz 2OTs 12OH	4 h 4 h 4 h 4 h		77 76 60 7	73 72 72 72 50	
Et O R	Oxone [®] , K ₂ CO ₃ , DME, K ₂ CO ₃ /AcOH buffer, -15°, 4 h	1		R CO ₂ Me CH ₂ OAc CMe ₂ OH	% Con 43 60 35	vn	% ee 74 75 76		115, 114
P C Et	Oxone [®] , K ₂ CO ₃ , DME, K ₂ CO ₃ /AcOH buffer, -15°, 4 h			R CO ₂ Me CH ₂ OAc CMe ₂ OH	% Cor 78 100 100	<u> </u>	% ee 77 72 79		115, 114
R ³ O R ⁵ O R ²	Oxone [®] , K ₂ CO ₃ , CH ₃ Cl Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	1		- 8	-2	_ <		Ø	119
		R1	R ²	R ³	R ⁴	_	% Convr	% ee	
		Me	Me	Me	Me	F H	11 93	92	
		Me Me	Me Me	Me Et	Me H	Н	79	91	
		Me	Me	i-Pr	Н	Н	64	89	
		Me	Me	—(CH ₂		Н	95	93	
			H ₂) ₄ —	Me	Me	Н	100	93	
		Me	Me	Et	Et	Н	91	93	
		Et	Et	Me	Me	H	81	90	
		Me	Me	—(CH ₂)5—	Н	100	89	
		— (C	H ₂) ₅ —	Me	Me	H	100	91	
		-(0	CH ₂) ₄ —	—(CH ₂	2.00	H	89	94	
		Et	Et	Et	Et	Н	32	86	
			H ₂) ₅ —	—(CH ₂		Н	51	87	
			CH ₂) ₆ —	—(CH ₂		Н	37	91	
		Me	Me	Bn	Bn	Н	18	66	

Substrate Ketone/Catalyst Conditions Product(s), Yield(s) (%) and Enantioselectivities (ee)

Ketone/Catalyst	Conditions	Product(s), Yield(s	s) (%) aı	nd Enantios	electivities	s (ee)Refs.
R^2 O O O	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	I	R ¹ Me —(CH ₂ Et —(CH ₂ n-Pr Ph Bn	Et	% Convn 44 36 33 52 28 26 19	% ee 61 61 61 52 82 48 56	119
OR CI	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	ī	R H Ac TBDM	% Cor 8 5 IS 10	65 66 40		119
OR OR	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	I	R Me (CH ₂) ₂	% Cor 15 Cl 16	59 67		119
	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	I (5) 4	1% ee				119
2000	Oxone [®] , K ₂ CO ₃ , CH ₃ CN Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	, I (41)	62% ee				119
Aco Aco	Oxone [®] , K ₂ CO ₃ , Solvent, Na ₂ B ₄ O ₇ buffer, EDTA	Solvent CH ₃ CN DME DME DMM Dioxane DMM/Cl		0° 0° -10° 0°	4 h 4 h 4 h 4 h 4 h 4 h	Convn % 58 6: 100 7(95 7: 43 6: 99 6: 99 6:	3 0 3 6 7
MeQ CF ₃	Oxone [®] , CH ₂ Cl ₂ /H ₂ O (pH 7.5), Bu ₄ NHSO ₄ , 2 to 5°, 40 h	Ph. O	I (6	55) 17%	ee		106
	Oxone [®] , NaHCO ₃ , O CH ₃ CN/H ₂ O, EDTA, rt, 1 h	I (61)	20% ec				112

Substrate Ketone/Catalyst Conditions Product(s), Yield(s) (%) and Enantioselectivities (ee)Refs.

			-
X	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, -10°, 2 h	I (94) 96% ee	25
X)	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	I (4) 23% ee	119
Mé Me Tro-	_	Ph **	11
Me Me O 2 TfO	Oxone [®] , CH ₃ CN, buffer, 0°, 6 h	I (—) 9% ee	11
O H 2 Tro	Oxone [®] , CH ₃ CN, buffer, 0°, 2 h	I (—) 40% ec	11
N+ +N 2 Trio-	Oxone [®] , CH ₃ CN, buffer, 0°, 6 h	I (—) 8% ee	11
Ph N+ +N Ph Ph 2 TfO	Oxone [®] , CH ₃ CN, buffer, 0°, 3 h	I (—) 10% ee	11
F	Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, 0°, 8 h	I (—) 71% ee	11
CO ₂ Me	Oxone [®] , phosphate buffer, CH ₂ Cl ₂ , Bu ₄ NHSO ₄ , 0°, 4.5 h	Ph I (±) (—)	369
O OH	Oxone [®] , phosphate buffer, CH ₂ Cl ₂ , Bu ₄ NHSO ₄ , 0°, 4.5 h	I (—)	369
CO ₂ Et	Oxone [®] , phosphate buffer, CH ₂ Cl ₂ , Bu ₄ NHSO ₄ , 0°, 4.5 h	I (—)	369

Substrate	Ketone/Catalyst	Conditions	Product(s), Yield(s) (%) and Enantioselectivities (ea	310.131.3
7757777	F CO ₂ Et	Oxone [®] , phosphate buffer, CH ₂ Cl ₂ , Bu ₄ NHSO ₄ , 0°, 4.5 h		369
R^2 R^3		Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, EDTA, 0°, 1.5 h	R ¹ R ² R ³ % ee Ph H Me (93) 92 Ph H CH ₂ OH (70) 90 n-Bu H n-Bu (70) 91 Bn H (CH ₂) ₂ CO ₂ Me (76) 91 Ph H Ph (75) 97 n-C ₆ H ₁₃ H n-C ₆ H ₁₃ (88) 93 Ph H CH ₂ OTBDMS (87) 94 Ph Ph n-C ₁ OH ₂₁ (66) 94	118
C ₉₋₁₄	Me + Me N CF ₃ SO ₃ -	Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, 0°, 5 h	R % ce Me (85) 35 Ph (—) 58	107
C ₉		Oxone [®] , NaHCO ₃ , OCH ₃ CN/H ₂ O, EDTA, rt, 210 min	Ph (70) 18% ee	24
Р Ь ОН		H ₂ O ₂ , CH ₃ CN, K ₂ CO ₃ buffer, EDTA, 0°, 18 h	OH (55) 89% ee	368
	X	Oxone [®] , K ₂ CO ₃ , DMM/ CH ₃ CN, buffer (pH 9.3), Bu ₄ NHSO ₄ , -10°, 3 h	Ph. OH (82) 94% ee	149a
Ph	Ph Ph Ph	1. LDA, THF, Ar, -78°, 30 min 278°, 3 h 3. DMD, acetone, -78°, 1 min	O Ph I (40) 13% ee	98
	20.	1. LDA, THF, Ar, -78°, 30 min 278 to 0°, 3 h 3. DMD, acetone, -78°, 1 min	I (64) 40% ee	98

TABLE 5. ENANTIO	OSELECTIVE EPOXIDATION O	F OLEFINS BY ENANTION	MERICALLY ENRICHED DIOXIRANES (Continued	
Substrate	Ketone/Catalyst	Conditions	Product(s), Yield(s) (%) and Enantioselectivities (e	e)Refs.
	TMS O TO Ph	1. LDA, THF, Ar, -78°, 30 min 278 to 0°, 3 h 3. DMD, acetone, -78°, 1 min	I (39) 38% ee	98
	Ph Ph Ph	1. LDA, THF, Ar, -78°, 30 min 278°, 3 h 3. DMD, acetone, -78°, 1 min	I (36) 13% ee	98
	R R R	1. LDA, THF, Ar, -78°, 30 min 278 to 0°, 3 h 3. DMD, acetone/Et ₂ O, -78°, 1 min	I (18) 63% ee	98
	i-PrO Ti O Ph	1. LDA, THF, Ar, -78°, 30 min 278 to 0°, 3 h 3. DMD, acetone, -78°, 1 min	O Ph (24) 5% ee	98
Ph R ²	£ 3	Oxone [®] , NaHCO ₃ , solvent, H ₂ O, EDTA	R ¹ O R ² I (95)	116
	Equiv 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3	Solvent Temp Time CH ₃ CN 0° 6.5 h CH ₃ CN 20° 5 h CH ₃ CN 0° 5 h CH ₃ CN -10° 6 h CH ₃ CN 0° 6.5 h DME 20° 5 h DME -10° 6 h DMM 0° 5 h CH ₂ Cl ₂ 0° 5 h CH ₃ CN 20° 5 h CH ₃ CN 0° 6.5 h CH ₃ CN 0° 5 h CH ₃ CN 0° 2.5 h CH ₃ CN -10° 6 h	H CH ₂ OH 26 18 H Ph 26 62 H Ph 20 78 H Ph 5 75 H Ph 35 85 H Ph 42 37 H Ph <5 38 H Ph <5 77 H Ph <5 77 H Ph 0 - H CH ₂ OTBDMS 23 57 H CH ₂ OTBDMS 29 87 Me Ph 47 70	

Substrate	Ketone/Catalyst	Conditions	Product(s), Yield(s) (%) and Enantioselectivities (e	e)Refs.
	Ph Ph O O O O	Oxone [®] , solvent, buffer (pH), Na ₂ EDTA, rt	I (95)	113
		Solvent pH Time Dioxane 8.0 240 h Dioxane 10.5 5 h CH ₃ CN 8.0 72 h Dioxane 8.0 168 h Dioxane 10.5 5 h Dioxane 10.5 5 h Dioxane 8.0 84 h Dioxane 10.5 5 h	R¹ R² % Convn % ee H CH ₂ OH 40 14 H CH ₂ OH 51 80 H Ph 39 1 H Ph 54 33 H Ph 67 65 H CH ₂ OTBDMS 78 77 Ph Ph 55 66 Ph Ph 70 81	
C ₉₋₁₃		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, K ₂ CO ₃ /AcOH buffer, -10°, 4 h	R R 8 6 6 6 6 7 1 8 9 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	123, 124
c,		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, Bu ₄ NHSO ₄ , Na ₂ EDTA, -10°, 2 h	(41) 97% ee	25
OMe		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h	0 \ /	122
C ₁₀		Oxone [®] , NaHCO ₃ , =O CH ₃ CN/H ₂ O, EDTA, rt, 80 min	* (85) <5% ee	24
		Oxone [®] , K ₂ CO ₃ , CH ₃ CI Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, -10°, 2 h	N, O I (85) 32% ee	25
		Oxone [®] , K ₂ CO ₃ , CH ₃ CN DMM, Na ₂ B ₄ O ₇ buffer Na ₂ EDTA, -10°, 2 h		25
	Aco	Oxone [®] , K ₂ CO ₃ , DME, K ₂ CO ₃ /AcOH buffer, -10°, 4 h	(93) 21% ee	114, 115
Ph	O OR CI	Oxone ⁹ , K ₂ CO ₃ , CH ₃ CN Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	R % Convn % ee H 6 68 Ac 11 67 TBDMS 8 17	119

Substrate	SELECTIVE EPOXIDATION O Ketone/Catalyst	Conditions				b) and Enan			
000000	rectores cutary or	Conditions	1100	401(0), 1	1010(0) (11	, and Dilan			0,110
	i co	Oxone®, K2CO3, CH3CN		\mathbb{R}^1	R ²	% Convn	% ee		
	R^2	Na ₂ B ₄ O ₇ buffer,	I	Me	Me	65	84		119
		Na ₂ EDTA, 0°, 1.5 h		-(C	$H_2)_4-$	81	76		
	K 0 0			Et	Et	63	76		
				-(C	H ₂) ₅ -	80	74		
				n-Pr	n-Pr	43	73		
				Ph	Ph	36	21		
				Bn	Bn	17	29		
	0	140							
	OR LOR	Oxone®, K2CO3, CH3CN	•	R	% Cor	ıvn % ee			
	XXY Y	Na ₂ B ₄ O ₇ buffer,	I	Me	17	30			119
	\0 \0	Na ₂ EDTA, 0°, 1.5 h		(CH ₂) ₂	Cl 18	29			
	o II	0 N K CO CII CIV	82						
	Vo	Oxone®, K ₂ CO ₃ , CH ₃ CN			** (1-2-27)				
	X	Na ₂ B ₄ O ₇ buffer,	1	(5) 35	% ee				119
	, 0, <	Na ₂ EDTA, 0°, 1.5 h							
	\mathbb{R}^5 \mathbb{R}^0 \mathbb{R}^2	Oxone®, K2CO3, CH3CN	,						
	R ³ O	Na ₂ B ₄ O ₇ buffer,	I						119
	P4 O R	Na ₂ EDTA, 0°, 1.5 h							
	K O O								
							<u> </u>	10 22 00000	
			R ¹ Me	R ² R Me M	3 R ⁴ Ie M		6 Convn 23	% ee	
			Me	Me M			100	72	
			Me	Me E			100	65	
			Me		Pr H		83	61	
			Me		-(CH ₂) ₄ -		100	69	
			—(CH ₂		ie M		100	72	
			Me	Me E			98	57	
			Et		ie M		77	71	
			Me		-(CH ₂) ₅		100	63	
			—(CH ₂		ie M		100	72	
			—(CH ₂		-(CH ₂) ₄ -		100	68	
							40	57	
				Et E				58	
					-(CH ₂) ₅ -		80 37	66	
					-(CH ₂) ₆ -		15	29	
	0 0	22	Me	Me B	n B	пп	13	29	
	√	Oxone [®] , K ₂ CO ₃ , CH ₃ CN,	Ph.	Q ,					2.2
	10000	Na ₂ B ₄ O ₇ buffer,	. 7	$\overline{}$	(57) 209	b ee			11
	0 0	Na ₂ EDTA, 0°, 1.5 h		•					
	0 0	ST NEW YORK ON DEVINE AND							
00 F:	a LTV	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/		P .	CO	C+	www.moneo		
CO₂Et	XX 1.0\	DMM, buffer (pH 10.5),		7	~ CO2	Et (82) 9:	5% ee		12
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	EDTA, 0°, 1.5 h							
OU	0 -0		0.						
NON OH		Oxone®, NaHCO3,	V	~~	//	OH	+		149
+	\times	CH₃CN, EDTA, 0°	1	51					
	0-			9		0.			
				\	/	\sim	OH		
						1			
					1	П			

Substrate	Ketone/Catalyst	Conditions	Product(s), Yield(s) (%) and Enantioselectivities (ee	Refs.
			pH Time % Convn I:II 7.0-7.5 2 h 12 2.4:1 8.0 1.5 h 24 3.1:1 9.0 1.5 h 45 4.6:1 10.0 1.5 h 58 6.1:1 11.0 1.5 h 58 5.6:1 11.5 1.5 h 58 5.9:1	
Bu-r		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	O () 26% ee	25
Bu-n		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	O (—) 79% ee	25
Er		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, K ₂ CO ₃ /AcOH buffer, -10°, 3 h	TMS (84) 95% ee	123, 124
TMS		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h	O TMS (60) 92% ee	122
R ² TMS		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 3 h	R ² TMS	370
			R ¹ R ² % ee HO(CH ₂) ₃ Et (80) 90 n-Bu Et (51) 90 HO(CH ₂) ₄ Et (75) 91 Ph Me (74) 94 Ph Et (82) 92 TBDMSOCH ₂ Et (67) 84 PhCH ₂ n-Bu (66) 93 TBDPSO(CH ₂) ₂ Et (67) 92	
C ₁₁ R		Oxone [®] , CH ₃ CN, DMM, K ₂ CO ₃ /AcOH buffer, K ₂ CO ₃ , 0°		124, 123
CI		Oxone [®] , phosphate buffer, CH ₂ Cl ₂ , Bu ₄ NHSO ₄ , 0°, 4.5 h	CI (±) (-)	369
Ph		Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, 0°, 2 h	Ph (41) 93% ee	117
C ₁₁₋₁₆ OAc		Oxone [®] , CH ₃ CN/DMM, Na ₂ B ₄ O ₇ (or K ₂ CO ₃ / AcOH) buffer, 0°	OAc R Time % ee Me 2 h (66) 91 Ph 3 h (46) 91	121
	Aco O	Oxone [®] , K ₂ CO ₃ , DME, K ₂ CO ₃ /AcOH buffer, -10°, 4 h	(83) 66% ee	115, 114

Substrate	Ketone/Catalyst	Conditions	Product(s), Yield(s) (%) and Enantioselectivities	(ee)Refs.
C ₁₁₋₁₇ R		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, K ₂ CO ₃ /AcOH buffer, -10°	R Time % ee H 3h (35) 93	124, 123
CO ₂ Et	w	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h	TMS 2 h (83) 97 TBDMS 2 h (93) 97 CO ₂ Et (61) 94% ee	122
CO ₂ Et	*	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h	O_CO ₂ Et (89) 94% ee	122
~~~~	8	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, -10°, 2 h	0 (92) 92% ee	25
R ² R ² O	$R \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$ $R \longrightarrow 0 \longrightarrow 0$	DMD, acetone/CH ₂ Cl ₂ , ~20°, 20 to 24 h	$R^1$	296, 102
	mol % 5 10 10 15 20 16 14	Additive  N-methylimidazole	R¹         R²         % ce           H         CN         (67)         21           H         CN         (53)         70           H         CN         (68)         82           H         CN         (62)         85           4-BrC ₆ H ₄ SO ₃ 4-BrC ₆ H ₄ SO ₃ (85)         83           PhSO ₃ PhSO ₃ (64)         84           TsO         TsO         (68)         84	
	Mn R = t-Bu  R = t-Bu  mol % 5 10 10 15 20 16 17	DMD, acetone/CH ₂ Cl ₂ , ~20°, 20 to 24 h  Additive   N-methylimidazole	R ¹ R ² % e  H CN (55) 15  H CN (56) 81  H CN (62) 84  H CN (78) 93  4-BrC ₆ H ₄ SO ₃ 4-BrC ₆ H ₄ SO ₃ (73) 84  PhSO ₃ PhSO ₃ (61) 88  TsO TsO (69) 86	
Ph	X	H ₂ O ₂ , CH ₃ CN, K ₂ CO ₃ buffer, EDTA, 0°, 7 h	Ph.O (90) 95% ee	368

Substrate

Ketone/Catalyst

Conditions

Product(s), Yield(s) (%) and Enantioselectivities (ee)Refs.

Oxone[®], K₂CO₃, DMM/CH₃CN, buffer (pH 9.3), Bu₄NHSO₄, 0°, 2 h

Oxone[®], K₂CO₃, CH₃CN/DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h

$$\begin{matrix} C_{12\text{-}17} \\ R^1 & OSiMe_2R^3 \\ R^2 \end{matrix}$$

Oxone®, CH₃CN, buffer (pH), Na₂EDTA, 0°

o			
$R^{1} \searrow R$	R ²		
о́н	7.70		

26

$R^1$	R ²	$\mathbb{R}^3$	pH	Time	% Convn	% ee
Me	Ph	Me	8	1.5 h	46	54
Ph	Me	Me	8	1.5 h	35	18
Et	Ph	Me	8	1.5 h	33	67
Me	Ph	t-Bu	8	3.0 h	92	82
Me	Ph	t-Bu	10.5	1.5 h	<10	42
Ph	Ph	Me	8	1.5 h	36	61
Ph	Ph	Me	8	18 h	53	53
Ph	Ph	Me	10.5	1.5 h	38	22

Oxone[®], K₂CO₃, CH₃CN, DMM, K₂CO₃/AcOH buffer. –10°

Oxone[®], K₂CO₃, CH₃CN/DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h

Substrate	Ketone/Catalyst	Conditions	Product(s), Yield(s) (%) and Enantioselectivities (e	e)Refs.
OR Ph	X	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, EDTA, -10°, 1.5 h	OR OR OR OR Ph IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	125
OR Ph	X	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, EDTA, 2.5 h	Me 61 95 - 6:1 TBDMS 70 99 81 4:1  OR Ph + OR Ph + OR Ph II III IIII  R Temp % Convn % ee of II II:III  Me -10° 65 85 6:1 COMe 0° 54 88 12:1  COCRE -10° 51 87 >20:1	125
OTMS  OTMS  Phr TMS	X	Oxone [®] , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1 h  Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h	CO ₂ Et -10° 51 97 >20:1  TMS -10° 49 95 >20:1  O OH (70) 83% ee  Ph O TMS I (31) 95% ee +	121
Ph Ph		Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA	Ph Time % ee rt 1 h (90) 20 0° 5 h (79) 26	112
	(m.)	Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, Na ₂ EDTA, π, 72 h	I (43) 27% ee	113
	**	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, rt, 1.5 h	I (55) 30% ee	113
		Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, Na ₂ EDTA, π, 0.4 h	I (39) 39% ee	113
	Et O O	Oxone [®] , K ₂ CO ₃ , DME/ DMM, K ₂ CO ₃ /AcOH buffer, -10°, 6 h	$\begin{array}{cccc} R & \% \ ee \\ \hline CO_2Me & (65) & 94 \\ CH_2OAc & (77) & 92 \\ CMe_2OH & (57) & 95 \\ \end{array}$	115, 114

Substrate Ketone/Catalyst Conditions Product(s), Yield(s) (%) and Enantioselectivities (ee)Refs.

0					312.
. Ĭ	Oxone®, K2CO3, DME/		R	% e	•
VO-V	DMM, K ₂ CO ₃ /AcOH	I	н	(11) 93	_
	buffer, -10°, 6 h		CH₂F	(71) 89	
Ŕ	bullet, -10, on		CO ₂ Me	(66) 95	
			CH ₂ OAc		
			CMe ₂ OH	(91) 96	
			CMe ₂ OMe	(94) 96	
			CH ₂ OTBDMS	(77) 90	
			CH ₂ OBz	(91) 90	
0			CH ₂ OTs	(74) 90	
0 L 0			pH % Con	vn % ee	
XYYX	Oxone®, DME,	I	8.5 15	64	115,
0	buffer (pH), 0°		9.5 32	67	114
AcO			10.5 44	67	
			11.7-12.3 50	66	
O					
O Et	Oxone®, K ₂ CO ₃ , DME/		R	% ee	
$X \perp \perp X$	DMM, K ₂ CO ₃ /AcOH	I	CO ₂ Me (58)	93	115,
O Et	buffer, -10°, 6 h		CH ₂ OAc (75)	92	114
K.:			CMe ₂ OH (57)	94	
			_		
O _OR			-	Convn % ee	
U COK	Oxone [®] , K ₂ CO ₃ , CH ₃ CN,		Н	2 –	nanaun
Vo~CI	Na ₂ B ₄ O ₇ buffer,	I	Ac	6 96	119
	Na ₂ EDTA, 0°, 1.5 h		TBDMS	0 -	
. 0 •					
O.			11m	CANTING COMP.	
OR	Oxone [®] , K ₂ CO ₃ , CH ₃ CN,			Convn % ee	
XTI	Na ₂ B ₄ O ₇ buffer,	I	Me	10 88	119
\ \o__\0	Na ₂ EDTA, 0°, 1.5 h		(CH ₂ ) ₂ Cl	10 90	
0					
ĬĬ	Oxone®, K2CO3, CH3CN,				
Vo	Na ₂ B ₄ O ₇ buffer,	I (27) 7	AG. 00		119
A .67		1 (27) 7	470 66		117
	Na ₂ EDTA, 0°, 1.5 h				
0, 0	Oxone®, K ₂ CO ₃ , CH ₃ CN,				
7	Na ₂ B ₄ O ₇ buffer,	I (14) 7	5% ee		119
	Na ₂ EDTA, 0°, 1.5 h	. (14)	570 00		
0 0	Mazedia, o , 1.5 ii				
^	20				
I r9/	Oxone [®] , K ₂ CO ₃ , CH ₃ CN,				********
$\sim$	Na ₂ B ₄ O ₇ buffer,	I (—) 7	8% ee		119
	Na ₂ EDTA, 0°, 1.5 h				
25 40					
	Oxone®, K2CO3, CH3CN,		$R^1$ $R^2$	% Convn %	ee
$R^2$ O	Na ₂ B ₄ O ₇ buffer,	I	Me Me	34 90	
-X - 1,0	Na ₂ EDTA, 0°, 1.5 h	=	—(CH ₂ ) ₄ —	34 9	
K. O.			Et Et	25 85	
			—(CH ₂ ) ₅ —	35 78	
			Ph Ph	10 6	
			Bn Bn	10 83	
					-

Substrate

Ketone/Catalyst

Conditions

Product(s), Yield(s) (%) and Enantioselectivities (ee)Refs.

$$R^3$$
  $R^5$   $R^2$   $R^2$ 

Oxone[®], K₂CO₃, CH₃CN, Na₂B₄O₇ buffer, Na₂EDTA, 0°, 1.5 h

119

$\mathbb{R}^1$	$\mathbb{R}^2$	$\mathbb{R}^3$	R ⁴	R ⁵	% Convn	% ee
Me	Me	Me	Me	F	3	11
Me	Me	Me	Me	H	75	97
Me	Me	Et	H	H	38	96
Me	Me	i-Pr	н	H	39	95
Me	Me	—(CH	2)4—	н	52	98
—(CH	I ₂ ) ₄ —	Me	Me	Н	66	98
Me	Me	Et	Et	H	38	94
Et	Et	Me	Me	Н	36	98
Me	Me	—(CH	2)3—	Н	59	92
—(CI	I ₂ ) ₅ —	Me	Me	Н	59	98
		<b>—(СН</b>	2)4—	Н	57	99
Et	Et	Et	Et	н	16	96
—(CI	I ₂ )5—	—(CH	2)3—	Н	41	98
—(CI	I ₂ ) ₆ —	—(CH	2)6—	н	30	98
DIG.	Me	Bn		н	7	93

R Time % ee

Me 1 h 93 56

TMS 20 h (—) 44

Substrate	Ketone/Catalyst	Conditions	Product(s), Yield(s) (%) and Enantioselectivities (ee)	Refs.
	CI OR	Oxone [®] , NaHCO ₃ , DME/H ₂ O, 25°, 22 h	R % ee F 87 C1 85 H 42 OH 81 OEt 72	109
	a Xa	Oxone [®] , NaHCO ₃ , DME/H ₂ O, 25°	I (—) 32% ee	109
	Ph O O	Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 1 h	Temp Time % ee  rt 1 h (73) 30  0° 5 h (72) 59	112
		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/DMM, Na ₂ B ₄ O ₇ buffer, 0°, 1.5 h	I (81) 98% ee	25
		Oxone [®] , phosphate buffer, CH ₂ Cl ₂ , Bu ₄ NHSO ₄ , 0°, 4.5 h	I (±) (—)	369
	O.Fo.	Oxone [®] , phosphate buffer, CH ₂ Cl ₂ , Bu ₄ NHSO ₄ , 0°, 4.5 h	I (±) (—)	369
R	zi j	Oxone [®] , NaHCO ₃ , DME/H ₂ O, 25°	N R	109
C ₁₄₋₂₀		Oxone [®] , NaHCO ₃ , O CH ₃ CN/H ₂ O, EDTA, rt	R Time % ee  Cl 4h 74  F 4h 78  H 1h 86  Me 4h 89  MeO 0.5 h 85  AcO 1h 74   R  R  R  R  R  R  R  R  R  R  R  R	24

Product(s), Yield(s) (%) and Enantioselectivities (ee)Refs. Substrate Ketone/Catalyst Conditions Oxone®, NaHCO3, CH₃CN/H₂O, I (--) 24 EDTA % ee R Time Temp Cl H 2-3 h rt (>90)76 Br 2-3 h (>90) 75 H π Br H 25 h (83) 40 min 71 1,3-dioxolan-2-yl H (>90)1,3-dioxolan-2-yl 20 h 84 Н 0-1° (>90)CI Me 2-3 h (>90)80 Br 2-3 h (>90) 85 Me Br Me 20 h (>90)88 (>90) 84 1,3-dioxolan-2-yl Me 40 min 1,3-dioxolan-2-yl Me 20 h 0-1° (>90) 88 CI Et 2-3 h (>90)85 (>90) Br 2-3 h 88 Et пt Br 24 h (51) 92 1,3-dioxolan-2-yl Et 40 min 82 (>90)1,3-dioxolan-2-yl Et 20 h 0-1° (>90) 91 CI 2-3 h 85 i-Pr (>90) (>90) Br 2-3 h 90 i-Pr πt Br 21 h (50)92 1,3-dioxolan-2-yl (>90) 88 i-Pr 40 min rt 1,3-dioxolan-2-yl i-Pr 20 h 0-1° (>90) 91 Cl 91 t-Bu 2-3 h (>90) (>90) Br 2-3 h 93 t-Bu rt Br t-Bu 18 h 0-1° (22)95 1,3-dioxolan-2-yl t-Bu 40 min 90 rt (>90)1,3-dioxolan-2-yl t-Bu 20 h (>90) Time % ee R Br 4 h 75 Oxone®, NaHCO3, F 4 h 79 I (—) н DME/H₂O, 25° 1 h 86 Me 4 h 87 72 AcO 4h t-Bu C14-20 Oxone®, NaHCO3, solvent, H2O, 116 EDTA, 20° Time % Convn % ee Solvent Н CH₃CN 24 h 12 32 Н dioxane 3 h 31 25 Н CH₃CN/DMM (2:1) 24 h <5 45 32 25 C14 Oxone®, K2CO3, DME, K₂CO₃/AcOH buffer, 115,

114

Substrate	Ketone/Catalyst	Conditions	Product(s), Yield(s) (%) and Enantioselectivities (ee)Refs
- Constitution - Cons	O	20000	Troduction, Treation (2) and Establishment (Contest
Ph		Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, K ₂ CO ₃ /AcOH buffer, 0°, 2 h	Ph (64) 94% ee 124, 123
Ph	•	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h	Ph TMS I (77) 94% ee + 122
			Ph TMS $\Pi$ (—) I: $\Pi$ = 14:1
C ₁₄₋₂₁ OTBDMS	*	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, K ₂ CO ₃ /AcOH buffer, -10°, 3 h	OTBDMS
C ₁₄ CO ₂ Et	**	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h	CO ₂ Et (68) 95% ee 122
C ₁₄₋₁₅ R O ₂ CBu-r	*	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, EDTA, -10°, 2.5 h	$ \begin{array}{c} R \\ O_2CBu-t \end{array} $ $ \begin{array}{c} R \\ O_2CBu-t \end{array} $ $ \begin{array}{c} II + \\ O_2CBu-t \end{array} $ $ \begin{array}{c} II + \\ II $
			P III O ₂ CBu-r
			R         % Convn         % ee of I         % ee of II         II:III           i-Pr         59         93         85         8:1           t-Bu         54         99         84         >20:1           OTMS         61         91         76         4:1
ОТВОМЅ	X	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h	OTBDMS (81) 96% ee 122
TMS	•	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h	(79) 95% ee 122
C ₁₅₋₁₇	N N N N N N N N N N N N N N N N N N N	=>R	
₩ R³	R = t-Bu	DMD, acetone/CH ₂ Cl ₂ , ~20°, 10 d	R ¹ O R ² 103, 104
			R1         R2         R3         % ee           H         H         H         (34)         56           MeO         H         H         (36)         39           Ms         H         H         (27)         48           MeO         MeO         H         (32)         86           MeO         H         MeO         (29)         22
			Ms' MeO H (23) 90

	Substrate	Ketone/Catalyst	Conditions	ERICALLY ENRICHED DIOXIRANES (Continued)  Product(s), Yield(s) (%) and Enantioselectivities (ee)Re
		R = t-Bu	DMD, acetone/CH ₂ Cl ₂ , ~20°, 10 d	R ¹ R ² R ³ % ec  H H H (31) 52  MeO H H (27) 37  Ms H H (22) 21  MeO MeO H (31) 82  MeO H MeO (39) 52
C ₁₅	OBz	XXXXX	H ₂ O ₂ , CH ₃ CN, K ₂ CO ₃ buffer, EDTA, 0°, 7 h	Ms MeO H (25) 72  OBz 10 (75) 93% ee 36
	PhOTBDMS		H ₂ O ₂ , CH ₃ CN, K ₂ CO ₃ buffer, EDTA, 0°, 15 h	OTBDMS (74) 93% ee 36
	OTBDMS Ph	*.	Oxone [®] , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 2 h	OH (80) 90% ee 12
	Ph OTMS Bu-r		Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, Na ₂ EDTA, 0°, 3.0 h	Ph Bu-r I (—) 52% ee 26
		*	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, Na ₂ EDTA, 0°, 1.5 h	I (—) 43% ee 26
C ₁₆	Ph Ph	5.	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h	Ph I (77) 97%ee + 12
		Xo Loo	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h	Ph I (65) 97% ee + 12
	Ph	X	Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, 0°, 2 h	Ph.O I (74) 95% ee
	OTBDMS		Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, 0 ^o	O OTBDMS + 10
				pH         Time         % Convn         I:II           7.0-7.5         2 h         5         4.3:1           8.0         1.5 h         10         4.4:1           10.6         1.5 h         41         4.5;1

Substrate	Ketone/Catalyst	Conditions	Product(s), Yield(s) (%) and Enantioselectivities (ee)Refs.
	X	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, Bu ₄ NHSO ₄ , Na ₂ EDTA, -10°, 2 h	
TMS Ph	*	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, buffer (pH 10.5), EDTA, 0°, 1.5 h	
O ₂ CPh		Oxone [®] , CH ₃ CN, DMM, Na ₂ B ₄ O ₇ buffer, EDTA, 0°, 1.5 h	O ₂ CPh O (92) 88% ee 121
CH(CO ₂ Me) ₂		Oxone [®] , K ₂ CO ₃ , CH ₃ CN, DMM, Na ₂ B ₄ O ₇ buffer, EDTA, 0°, 2.5 h	CH(CO ₂ Me) ₂ CH(CO ₂ Me) ₂ (—) 81% ee + O  Ph  CH(CO ₂ Me) ₂ CH(CO ₂ Me) ₂
OTBDMS	*	Oxone [®] , K ₂ CO ₃ , CH ₃ CN/ DMM, Na ₂ B ₄ O ₇ buffer, EDTA, 2.5 h	ОТВОМS ОТВОМS
			OTBDMS  O III  TMS
			Temp % Convn % ee of I II:III  -10° 49 75 13:1  20° 66 96 8:1
C ₁₈		Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt	(>90) 24 X Time % ce Br 2-3 h 74
C ₁₉	CF ₃ OMe	Oxone [®] , CH ₂ Cl ₂ /H ₂ O (pH 7.5), Bu ₄ NHSO ₄ , 2 to 5°, 17 h	1,3-dioxolan-2-yl 40 min 73  O (68) 16% ee 106
	MeQ_CF ₃	Oxone®, CH ₂ Cl ₂ /H ₂ O (pH 7.5), Bu ₄ NHSO ₄ , 2 to 5°, 17 h	0 (68) 16% ee 106

	Substrate	Ketone/Catalyst	Conditions	Product(s), Yield(s) (%) and Enantioselectivities (ee)Refs.
C ₂₀	Ph Ph		Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt	Ph O I 24, 110, 111  X Time % ee  Br 24 h (82) 81  Cl 24 h (96) 76  H 75 min (97) 48  CH ₂ OMe 2.3 h (95) 67  1,3-dioxolan-2-yl 3 h (90) 73
		0 ₂ N 0 ₂ N 0	Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 60 min	I (82) 49% ee 24
		0,00	Oxone [®] , K ₂ CO ₃ , CH ₃ CN, Na ₂ B ₄ O ₇ buffer, rt, 1.5 h	Ph O Ph (—) 24% ee) 113
	i-Pr		Oxone [®] , NaHCO ₃ , CH ₃ CN/H ₂ O, EDTA, rt, 35 min	Pr-i (94) 66% ee 24
C ₂₂	t-Bu-t	O ₂ N O ₂ N O ₂ N O ₂ N O ₃ N O ₄ N O ₅ N	Oxone [®] , NaHCO ₃ , O CH ₃ CN/H ₂ O, EDTA, π, 35 min	O Bu-t I (91) 77% ee 24
			O Oxone [®] , NaHCO ₃ , solvent, EDTA	Solvent         Temp         Time         % ee           DME-H ₂ O         rt         0.5 h         (92)         77           I         CH ₃ CN-H ₂ O         rt         0.7 h         (95)         76         24           Dioxane-H ₂ O         rt         24 h         (52)         76         76         77         77         77         77         77         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78         78
C ₂₆	Ph		Oxone [®] , NaHCO ₃ , OCH ₃ CN/H ₂ O, EDTA, rt, 8 h	Ph (83) 18% ee 24

	Substrate	Ketone/Catalyst	Conditions	Product(s), Yield(s) (%) and Enantioselectivities (ee)Refs.
C ₃₀	OH OH	X . X	1. Oxone [®] , MeCN, DMN H ₂ O, (pH 10.5), 0°, 1.5 h 2. CSA, toluene, 0°, 1 h,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(	OH OOH		Oxone [®] , MeCN, DMM, H ₂ O, (pH 10.5), 0°, 1.5 h	0.
(	ОН		Oxone [®] , MeCN, DMM, H ₂ O, (pH 10.5), 0°, 1.5 h	O (-) 126
( )	OH OH		Oxone [®] , MeCN, DMM, H ₂ O, (pH 10.5), 0°, 1.5 h	о (—) 126 ОН ОН

## 8. Acknowledgments

Generous financial support of the *Deutsche Forschungsgemeinschaft* (*Schwerpunktprogramm: Peroxidchemie*) and the *Fonds der Chemischen Industrie* and a doctoral fellowship for C.-G. Z. from the *Deutscher Akademischer Austauschdienst* (*DAAD*) are gratefully appreciated. The authors also thank Mrs. Ana-Maria Krause for her help in preparing the tabular and graphical material.

## References

- 1. Adam, W.; Curci, R.; Edwards, J. O. Acc. Chem. Res. 1989, **22**, 205.
- 2. Murray, R. W. Chem. Rev. 1989, 89, 1187.
- 3. Curci, R. In *Advances in Oxygenated Processes*; Baumstark, A. L., Ed.; JAI: Greenwich CT, 1990, Vol. **2**, Chapter "I"; pp. 1–59.
- Adam, W.; Hadjiarapoglou, L. P.; Curci, R.; Mello, R. In *Organic Peroxides*; Ando, W., Ed.; Wiley: New York, 1992, Chapter "4"; pp. 195–219.
- 5. Adam, W.; Hadjiarapoglou, L. Top. Curr. Chem. 1993, 164, 45.
- 6. Curci, R.; Dinoi, A.; Rubino, M. F. Pure Appl. Chem. 1995, 67, 811.
- 7. Lévai, A.; Adam, W.; Halász, J.; Nemes, C.; Patonay, T.; Tóth, G. Khim. Geterotsikl. Soedin. (Engl. Trans.) 1995, **10**, 1345; Chem. Abstr. 1991, **125**, 1049z.
- 8. Adam, W.; Smerz, A. K. Bull. Soc. Chim. Belg. 1996, 105, 581.
- 9. Murray, R. W.; Singh, M. In *Comprehensive Heterocyclic Chemistry II*; Padwa, A., Ed.; Elsevier: Oxford, 1996, Vol. **1A**; pp. 429–456.
- 10. Adam, W.; Smerz, A. K.; Zhao, C.-G. J. Prakt. Chem. 1997, **339**, 298.
- 11. Denmark, S. E.; Wu, Z. Synlett 1999, 847.
- Adam, W.; Degen, H.-G.; Pastor, A.; Saha-Möller, C. R.; Schambony, S. B.; Zhao, C.-G. In *Peroxide Chemistry: Mechanistic and Preparative Aspects of Oxygen Transfer*, Adam, W., Ed.; Wiley-VCH: Weinheim, 2000, pp. 78–112.
- Adam, W.; Curci, R.; D'Accolti, L.; Dinoi, A.; Fusco, C.; Gasparrini, F.;
   Kluge, R.; Paredes, R.; Schulz, M.; Smerz, A. K.; Veloza, L. A.;
   Weinkötz, S.; Winde, R. Chem. Eur. J. 1997, 3, 105.
- 14. Adam, W.; Fröhling, B.; Peters, K.; Weinkötz, S. J. Am. Chem. Soc. 1998, **120**, 8914.
- 15. Baumstark, A. L.; McCloskey, C. J. Tetrahedron Lett. 1987, 28, 3311.
- 16. Baumstark, A. L.; Vasquez, P. C. J. Org. Chem. 1988, **53**, 3437.
- 17. Houk, K. N.; Liu, J.; DeMello, N. C.; Condroski, K. R. J. Am. Chem. Soc. 1997, **119**, 10147.
- 18. Liu, J.; Houk, K. N.; Dinoi, A.; Fusco, C.; Curci, R. J. Org. Chem. 1998, **63**, 8565.
- 19. Jenson, C.; Liu, J.; Houk, K. N.; Jorgensen, W. L. J. Am. Chem. Soc. 1997, **119**, 12982.
- Bach, R. D.; Canepa, C.; Winter, J. E.; Blanchette, P. E. J. Org. Chem. 1997, 62, 5191.
- 21. Bach, R. D.; Glukhovtsev, M. N.; Gonzalez, C.; Marquez, M.; Estévez, C. M.; Baboul, A. G.; Schlegel, H. B. J. Phys. Chem. A 1997, **101**, 6092.

- 22. Miaskiewicz, K; Smith, D. A. J. Am. Chem. Soc. 1998, 120, 1872.
- 23. Freccero, M.; Gandolfi, R.; Sarzi-Amadè, M.; Rastelli, A. Tetrahedron 1998, **54**, 12323.
- 24. Yang, D.; Wong, M.-K.; Yip, Y.-C.; Wang, X.-C.; Tang, M.-W.; Zheng, J.-H.; Cheung, K.-K. J. Am. Chem. Soc. 1998, **120**, 5943.
- 25. Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, **119**, 11224.
- 26. Adam, W.; Fell, R. T.; Saha-Möller, C. R.; Zhao, C.-G. Tetrahedron: Asymmetry 1998, **9**, 397.
- 27. Adam, W.; Curci, R.; González Nuñez, M. E.; Mello, R. J. Am. Chem. Soc. 1991, **113**, 7654.
- 28. Shea, K. J.; Kim, J.-S. J. Am. Chem. Soc. 1992, 114, 3044.
- 29. Bravo, A.; Fontana, F.; Fronza, G.; Minisci, F.; Serri, A. Tetrahedron Lett. 1995, **36**, 6945.
- 30. Bravo, A.; Fontana, F.; Fronza, G.; Minisci, F.; Zhao, L. J. Org. Chem. 1998, **63**, 254.
- 31. Edwards, J. O.; Pater, R. H.; Curci, R.; Di Furia, F. Photochem. Photobiol. 1979, **30**, 63.
- 32. Curci, R.; Fiorentino, M.; Troisi, L.; Edwards, J. O.; Pater, R. H. J. Org. Chem. 1980, **45**, 4758.
- 33. Jeyaraman, R.; Murray, R. W. J. Am. Chem. Soc. 1984, **106**, 2462.
- 34. Adam, W.; Hadjiarapoglou, L.; Smerz, A. Chem. Ber. 1991, **124**, 227.
- 35. Yang, D.; Wong, M.-K.; Yip, Y.-C. J. Org. Chem. 1995, **60**, 3887.
- 36. Frohn, M.; Wang, Z.-X.; Shi, Y. J. Org. Chem. 1998, **63**, 6425.
- 37. Denmark, S. E.; Wu, Z. J. Org. Chem. 1998, 63, 2810.
- 38. Yang, D.; Yip, Y.-C.; Jiao, G.-S.; Wong, M.-K. J. Org. Chem. 1998, **63**, 8952.
- 39. Yang, D.; Yip, Y.-C.; Tang, M.-W.; Wong, M.-K; Cheung, K.-K. J. Org. Chem. 1998, **63**, 9888.
- 40. Carnell, A. J.; Johnstone, R. A. W.; Parsy, C. C.; Sanderson, W. R. Tetrahedron Lett. 1999, **40**, 8029.
- 41. Bentley, T. W.; Norman, S. J.; Gerstner, E.; Kemmer, R.; Christl, M. Chem. Ber. 1993, **126**, 1749.
- 42. Hofland, A.; Steinberg, H.; de Boer, T. J. Recl. Trav. Chim. Pays-Bas 1985, **104**, 350.
- 43. Trost, B. M.; Bogdanowicz, M. J. J. Am. Chem. Soc. 1973, **95**, 5321.
- 44. Adam, W.; Hadjiarapoglou, L.; Jäger, V.; Klici c, J.; Seidel, B.; Wang, X. Chem. Ber. 1991, **124**, 2361.
- 45. Adam, W.; Hadjiarapoglou, L.; Wang, X. Tetrahedron Lett. 1989, **30**, 6497.

- 46. Rubottom, G. M.; Vazquez, M. A.; Pelegrina, D. R. Tetrahedron Lett. 1974, **15**, 4319.
- 47. Adam, W.; Hadjiarapoglou, L.; Mosandl, T.; Saha-Möller, C. R.; Wild, D. Angew. Chem., Int. Ed. Engl. 1991, **30**, 200.
- 48. Adam, W.; Bialas, J.; Hadjiarapoglou, L.; Sauter, M. Chem. Ber. 1992, **125**, 231.
- 49. Sauter, M.; Adam, W. Acc. Chem. Res. 1995, 28, 289.
- 50. Adam, W.; Sauter, M. unpublished results.
- 51. Baertschi, S. W.; Raney, K. D.; Stone, M. P.; Harris, T. M. J. Am. Chem. Soc. 1988, **110**, 7929.
- 52. Patai, S.; Rappoport, Z. In *The Chemistry of Alkenes*; Patai, S., Ed.; Wiley: New York, 1964, Vol. 1, pp. 512–517.
- 53. Adam, W.; Hadjiarapoglou, L.; Nestler, B. Tetrahedron Lett. 1990, **31**, 331.
- 54. Piers, E.; Boulet, S. L. Tetrahedron Lett. 1997, **38**, 8815.
- 55. Porter, M. J.; Skidmore, J. J. Chem. Soc., Chem. Commun. 2000, 1215.
- 56. Adam, W.; Hadjiarapoglou, L. Chem. Ber. 1990, 123, 2077.
- 57. Adam, W.; Hadjiarapoglou, L.; Levai, A. Synthesis 1992, 436.
- 58. Adam, W.; Golsch, D.; Hadjiarapoglou, L.; Patonay, T. Tetrahedron Lett. 1991, **32**, 1041.
- 59. Adam, W.; Golsch, D.; Hadjiarapoglou, L.; Patonay, T. J. Org. Chem. 1991, **56**, 7292.
- 60. Lévai, A.; Adam, W.; Jekö, J.; Patonay, T.; Székely, A.; Vass, E. B. J. Heterocycl. Chem. 2000, **37**, 1065.
- 60a. Ferrer, M.; Sánchez-Baeza, F.; Messeguer, A.; Adam, W.; Golsch, D.; Görth, F.; Kiefer, W.; Nagel, V. Eur. J. Org. Chem. 1998, 2527.
- 61. Murray, R. W.; Jeyaraman, R.; Pillay, M. K. J. Org. Chem. 1987, **52**, 746.
- 61a. Scammells, P. J.; Baker, S. P.; Bellardinelli, L.; Olsson, R. A.; Russell, R. A.; Knevitt, S. A. Bioorg. Med. Chem. Lett. 1996, **6**, 811.
- 62. Ferrer, M.; Sánchez-Baeza, F.; Messeguer, A. Tetrahedron 1997, **53**, 15877.
- 63. Ferrer, M.; Sánchez-Baeza, F.; Messeguer, A.; Diez, A.; Rubiralta, M. J. Chem. Soc., Chem. Commun. 1995, 293.
- 64. Adam, W.; Ahrweiler, M.; Paulini, K.; Rei β ig, H.-U.; Voerckel, V. Chem. Ber. 1992, **125**, 2719.
- 65. Asensio, G.; Mello, R.; Boix-Bernardini, C.; González-Núñez, M. E.; Castellano, G. J. Org. Chem. 1995, **60**, 3692.
- 66. Adam, W.; Golsch, D.; Hadjiarapoglou, L.; Lévai, A.; Nemes, C.;

- Patonay, T. Tetrahedron 1994, 50, 13113.
- 67. Murray, R. W.; Singh, M.; Williams, B. L.; Moncrieff, H. M. J. Org. Chem. 1996, **61**, 1830.
- 68. Armstrong, A.; Barsanti, P. A.; Clarke, P. A.; Wood, A. J. Chem. Soc., Perkin Trans. 1 1996, 1373.
- 69. Foglia, T. A.; Sonnet, P. E.; Nunez, A.; Dudley, R. L. J. Am. Oil Chem. Soc. 1998, **75**, 601.
- 70. Rodríguez, G.; Castedo, L.; Domínguez, D.; Saá, C.; Adam, W.; Saha-Möller, C. R. J. Org. Chem. 1999 **64**, 877.
- 71. Wang, X.; Ramos, B.; Rodriguez, A. Tetrahedron Lett. 1994, 35, 6977.
- 72. Adam, W.; Smerz, A. K. J. Org. Chem. 1996, 61, 3506.
- 73. Adam, W.; Prechtl, F.; Richter, M. J.; Smerz, A. K. Tetrahedron Lett. 1993, **34**, 8427.
- 74. Adam, W.; Prechtl, F.; Richter, M. J.; Smerz, A. K. Tetrahedron Lett. 1995, **36**, 4991.
- 75. Adam, W.; Paredes, R.; Smerz, A. K.; Veloza, L. A. Liebigs Ann./Recl. 1997, 547.
- 76. de Macedo Puyau, P.; Perie, J. J. Synth. Commun. 1998, **28**, 2679.
- 76a. Mello, R.; Fiorentino, M.; Fusco, C.; Curci, R. J. Am. Chem. Soc. 1989, **111**, 6749.
  - 77. Bovicelli, P.; Lupattelli, P.; Mincione, E. J. Org. Chem. 1994, 59, 4304.
  - 78. Messeguer, A.; Fusco, C.; Curci, R. Tetrahedron 1993, **49**, 6299.
  - 79. Adam, W.; Wirth, T. Acc. Chem. Res. 1999, 32, 703.
- 80. Adam, W.; Paredes, R.; Smerz, A. K.; Veloza, L. A. Eur. J. Org. Chem. 1998, 349.
- 81. Yang, D.; Jiao, G.-S.; Yip, Y.-C.; Wong, M.-K. J. Org. Chem. 1999, **64**, 1635.
- 82. Vedejs, E.; Dent, W. H., III; Kendall, J. T.; Oliver, P. A. J. Am. Chem. Soc. 1996, **118**, 3556.
- 83. Adam, W.; Mitchell, C. M.; Saha-Möller, C. R. Eur. J. Org. Chem. 1999, 785.
- 84. Mello, R.; Ciminale, F.; Fiorentino, M.; Fusco, C.; Prencipe, T.; Curci, R. Tetrahedron Lett. 1990, **31**, 6097.
- 85. Bovicelli, P.; Lupattelli, P.; Mincione, E.; Prencipe, T.; Curci, R. J. Org. Chem. 1992, **57**, 5052.
- 86. Ebenezer, W.; Pattenden, G. Tetrahedron Lett. 1992, 33, 4053.
- 87. Adam, W.; Smerz, A. K. Tetrahedron 1995, **51**, 13039.
- 88. Freccero, M.; Gandolfi, R.; Sarzi-Amede, M; Rastelli, A. J. Org. Chem. 2000, **65**, 2030.

- 89. Adam, W.; Bach, R. D.; Dmitrenko, O.; Saha-Möller, C. R. J. Org. Chem. 2000, **65**, 6715.
- 90. Evans, D. A.; Trotter, B. W.; Coleman, P. J.; Côté, B.; Dias, L. C.; Rajapakse, H. A.; Tyler, A. N. Tetrahedron 1999, **55**, 8671.
- 91. Halcomb, R. L.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 6661.
- 92. Liu, K. K.-C.; Danishefsky, S. J. J. Org. Chem. 1994, **59**, 1892.
- 93. Randolph, J. T.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1995, **117**, 5712.
- 94. Roberge, J. Y.; Beebe, X.; Danishefsky, S. J. J. Am. Chem. Soc. 1998, **120**, 3915.
- 95. Deshpande, P. P.; Kim, H. M.; Zatorski, A.; Park, T.-K.; Ragupathi, G.; Livingston, P. O.; Live, D.; Danishefsky, S. J. J. Am. Chem. Soc. 1998, **120**, 1600.
- 96. Swindell, C. S.; Chander, M. C. Tetrahedron Lett. 1994, 35, 6001.
- 97. Adam, W.; Müller, M.; Prechtl, F. J. Org. Chem. 1994, 59, 2358.
- 98. Adam, W.; Prechtl, F. Chem. Ber. 1994, 127, 667.
- 99. Adam, W.; Pastor, A.; Peters, K.; Peters, E.-M. Org. Lett. 2000, 2, 1019.
- 100. Jacobsen, E. N. In *Catalytic Asymmetric Synthesis*; Ojima, I., Ed.; VCH: New York, 1993, pp. 159–202.
- 101. Katsuki, T. Coord. Chem. Rev. 1995, **140**, 189.
- 102. Adam, W.; Jekö, J.; Lévai, A.; Nemes, C.; Patonay, T.; Sebök, P. Tetrahedron Lett. 1995, 36, 3669.
- 103. Lévai, A.; Adam, W.; Fell, R. T.; Gessner, R.; Patonay, T.; Simon, A.; Tóth, G. Tetrahedron 1998, **54**, 13105.
- 104. Adam, W.; Fell, R. T.; Lévai, A.; Patonay, T.; Peters, K.; Simon, A.; Tóth, G. Tetrahedron: Asymmetry 1998, **9**, 1121.
- 105. Curci, R.; Fiorentino, M.; Serio, M. R. J. Chem. Soc., Chem. Commun. 1984, 155.
- 106. Curci, R.; D'Accolti, L.; Fiorentino, M.; Rosa, A. Tetrahedron Lett. 1995, **36**, 5831.
- 107. Denmark, S. E.; Wu, Z.; Crudden, C. M.; Matsuhashi, H. J. Org. Chem. 1997, **62**, 8288.
- 108. Armstrong, A.; Hayter, B. R. J. Chem. Soc., Chem. Commun. 1998, 621.
- 109. Yang, D.; Yip, Y.-C.; Chen, J.; Cheung, K.-K. J. Am. Chem. Soc. 1998, **120**, 7659.
- 110. Yang, D.; Yip, Y.-C.; Tang, M.-W.; Wong, M.-K.; Zheng, J.-H.; Cheung, K.-K. J. Am. Chem. Soc. 1996, **118**, 491.
- 111. Yang, D.; Wang, X.-C.; Wong, M.-K.; Yip, Y.-C.; Tang, M.-W. J. Am. Chem. Soc. 1996, **118**, 11311.
- 112. Song, C. E.; Kim, Y. H.; Lee, K. C.; Lee, S.-g.; Jin, B. W. Tetrahedron:

- Asymmetry 1997, 8, 2921.
- 113. Adam, W.; Zhao, C.-G. Tetrahedron: Asymmetry 1997, **8**, 3995.
- 114. Wang, Z.-X.; Shi, Y. J. Org. Chem. 1997, **62**, 8622.
- 115. Wang, Z.-X.; Miller, S. M.; Anderson, O. P.; Shi, Y. J. Org. Chem. 1999, **64**, 6443.
- 116. Adam, W.; Saha-Möller, C. R.; Zhao, C.-G. Tetrahedron: Asymmetry 1999, **10**, 2749.
- 117. Tu, Y.; Wang, Z.-X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806.
- 118. Wang, Z.-X.; Tu, Y.; Frohn, M.; Shi, Y. J. Org. Chem. 1997, **62**, 2328.
- 119. Tu, Y.; Wang, Z.-X.; Frohn, M.; He, M.; Yu, H.; Tang, Y.; Shi, Y. J. Org. Chem. 1998, **63**, 8475.
- 120. Adam, W.; Staab, E. Institut für Organische Chemie, Universität Würzburg, Würzburg, Germany, unpublished results.
- 121. Zhu, Y.; Tu, Y.; Yu, H.; Shi, Y. Tetrahedron Lett. 1998, **39**, 7819.
- 122. Frohn, M.; Dalkiewicz, M.; Tu, Y.; Wang, Z.-X.; Shi, Y. J. Org. Chem. 1998, **63**, 2948.
- 123. Cao, G.-A.; Wang, Z.-X.; Tu, Y.; Shi, Y. Tetrahedron Lett. 1998, **39**, 4425.
- 124. Wang, Z.-X.; Cao, G.-A.; Shi, Y. J. Org. Chem. 1999, 64, 7646.
- 125. Frohn, M.; Zhou, X.; Zhang, J.-R.; Tang, Y.; Shi, Y. J. Am. Chem. Soc. 1999, **121**, 7718.
- 126. Xiong, Z.; Corey, E. J. J. Am. Chem. Soc. 2000, 122, 4831.
- 127. Swern, D. Org. React. 1953, **7**, 378.
- 128. Dryuk, V. G. Russ. Chem. Rev. 1985, **54**, 986; Chem. Abstr. 1986, **104**, 109449.
- 129. Adam, W.; Saha-Möller, C. R.; Ganeshpure, P. Chem. Rev. 2001, **101**, 3499.
- 130. Ganeshpure, P. A.; Adam, W. Synthesis 1996, 179.
- 131. Plesni ar, B. In *The Chemistry of Peroxides*; Patai, S., Ed.; Wiley: Chichester, 1983, pp. 567–584.
- 132. Davis, F. A.; Sheppard, A. C.; Chen, B.-C.; Haque, M. S. J. Am. Chem. Soc. 1990, **112**, 6679.
- 133. Lusinchi, X.; Hanquet, G. Tetrahedron 1997, **53**, 13727.
- 134. Minakata, S.; Takemiya, A.; Nakamura, K.; Ryu, I.; Komatsu, M. Synlett 2000, 1810.
- 134a Adam, W.; Mitchell, C. M.; Paredes, R.; Smerz, A. K.; Veloza, L. A. . Liebigs Ann./Recl. 1997, 1365.
- 135. Adam, W.; Degen, H.-G.; Saha-Möller, C. R. J. Org. Chem. 1999, **64**, 1274.

- 136. Adam, W.; Stegmann, V. R.; Saha-Möller, C. R. J. Am. Chem. Soc. 1999, **121**, 1879.
- 137. Jørgensen, K. A. Chem. Rev. 1989, 89, 431.
- 138. Mimoun, H. In *The Chemistry of Peroxides*; Patai, S., Ed.; Wiley: Chichester, 1983, pp. 463–482.
- 139. Bortolini, O.; Di Furia, F.; Modena, G.; Seraglia R. J. Org. Chem. 1985, **50**, 2688.
- 140. Prat, D.; Lett, R. Tetrahedron Lett. 1986, 27, 707.
- 141. Prandi, J.; Kagan, H. B.; Mimoun, H. Tetrahedron Lett. 1986, 27, 2617.
- 142. Venturello, C.; D'Aloisio, R. J. Org. Chem. 1988, **53**, 1553.
- 143. Adam, W.; Mitchell, C. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 533.
- 144. Adam, W.; Mitchell, C. M.; Saha-Möller, C. R.; Weichold, O. In Structure and Bonding, Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations; Meunier, B., Ed.; Springer Verlag: Berlin Heidelberg, 2000, Vol. 97, pp. 237–285.
- 145. Herrmann, W. A.; Fischer, R. W.; Marz, D. W. Angew. Chem., Int. Ed. Engl. 1991, **30**, 1638.
- 146. Rozen, S.; Kol, M. J. Org. Chem. 1990, 55, 5155.
- 147. Adam, W.; Lazarus, M.; Saha-Möller, C. R.; Weichold, O.; Hoch, U.; Häring, D.; Schreier P. In Advances in Biochemical Engineering/Biotechnology; Faber, K., Ed.; Springer Verlag: Heidelberg, 1999, Vol. 63, pp. 73–108.
- 148. Katsuki, T.; Martin, V. S. Org. React. 1996, 48, 1.
- 149. Jacobsen, E. N. In Comprehensive Organometallic Chemistry II; Abel, E. W.; Stone, F. G. A.; Wilkinson, G.; Hegedus, L. S., Eds.; Pergamon: New York, 1995, Vol. 12, Chapter "11.1", pp. 1097–1135.
- 149a Wang, Z.-X.; Shi, Y. J. Org. Chem. 1998, **63**, 3099.
- 150. Johnson, R. A.; Sharpless, K. B. In *Catalytic Asymmetric Synthesis*; Ojima, I., Ed.; VCH: New York, 1993, pp. 103–158.
- 151. Katsuki, T. J. Mol. Cat. A 1966, 113, 87.
- 152. Davies, R. J. H.; Boyd, D. R.; Kumar, S.; Sharma, N. D.; Stevenson, C. Biochem. Biophys. Res. Commun. 1990, **169**, 87.
- 153. Adam, W.; Bialas, J.; Hadjiarapoglou, L. Chem. Ber. 1991, **124**, 2377.
- 154. Adam, W.; Golsch, D.; Zhao, C.-G. Institut für Organische Chemie, Universität Würzburg, Würzburg, Germany, unpublished result, which was adapted from refs. 76a and 155.
- 155. Mello, R.; Fiorentino, M.; Sciacovelli, O.; Curci, R. J. Org. Chem. 1988, **53**, 3890.
- 156. Murray, R. W.; Singh, M.; Jeyaraman, R. J. Am. Chem. Soc. 1992, 114,

- 1346.
- 157. Smerz, A. K. Ph. D. Dissertation, University of Würzburg, 1996.
- 158. Adam, W.; Makosza, M.; Stalinski, K.; Zhao, C.-G. J. Org. Chem. 1998, **63**, 4390.
- 159. Adam, W.; Pastor, A.; Zhao, C.-G. Institut für Organische Chemie, Universität Würzburg, Würzburg, Germany, unpublished results.
- 160. Curci, R.; D'Accolti, L.; Fiorentino, M.; Fusco, C.; Adam, W.; González-Nuñez, M. E.; Mello, R. Tetrahedron Lett. 1992, 33, 4225.
- 161. Hull, L. A.; Badai, L. Tetrahedron Lett. 1993, 34, 5039.
- 162. Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, **50**, 2847.
- 163. Murray, R. W.; Singh, M. Org. Synth. Coll. Vol. 9 1998, 288.
- 164. Gibert, M.; Ferrer, M.; Sánchez-Baeza, F.; Messeguer, A. Tetrahedron 1997, **53**, 8643.
- 165. Ferrer, M.; Sánchez-Baeza, F.; Casas J.; Messeguer, A. Tetrahedron Lett. 1994, **35**, 2981.
- 166. Zhao, C.-G. Ph. D. Dissertation, University of Würzburg, 1999.
- 167. Adam, W.; Reinhardt, D.; Rei βig, H.-U.; Paulini, K. Tetrahedron 1995, **51**, 12257.
- 168. Denmark, S. E.; Forbes, D. C.; Hays, D. S.; DePue, J. S.; Wilde, R. G. J. Org. Chem. 1995, **60**, 1391.
- Rahman, M.; McKee, M. L.; Shevlin, P. B.; Sztyrbicka, R. J. Am. Chem. Soc. 1988, 110, 4002.
- 170. Abou-Elzahab, M.; Adam, W.; Saha-Möller, C. R. Liebigs Ann. Chem. 1991, 445.
- 171. Righi, G.; Bovicelli, P.; Sperandio, A. Tetrahedron Lett. 1999, 40, 5889.
- 172. Sander, W.; Schroeder, K.; Muthusamy, S.; Kirschfeld, A.; Kappert, W.; Boese, R.; Kraka, E.; Sosa, C.; Cremer, D. J. Am. Chem. Soc. 1997, 119, 7265.
- 173. Kirschfeld, A.; Muthusamy, S.; Sander, W. Angew. Chem., Int. Ed. Engl. 1994, **33**, 2212.
- 174. Murray, R. W.; Gu, D. J. Chem. Soc., Perkin Trans. 2 1993, 2203.
- 175. Murray, R. W.; Kong, W.; Rajadhyaksha, S. N. J. Org. Chem. 1993, **58**, 315.
- 176. Murray, R. W.; Gu, H. J. Phys. Org. Chem. 1996, **9**, 751.
- 177. Murray, R. W.; Pillay, M. K.; Jeyaraman, R. J. Org. Chem. 1988, **53**, 3007.
- 178. Murray, R. W.; Pillay, M. K. Tetrahedron Lett. 1988, **29**, 15.
- 179. Nojima, T.; Hirano, Y.; Ishiguro, K.; Sawaki, Y. J. Org. Chem. 1997, **62**, 2387

- 180. Adam, W.; Hadjiarapoglou, L. P.; Meffert, A. Tetrahedron Lett. 1991, **32**, 6697.
- 181. Murray, R. W.; Singh, M. Org. Synth. 1997, **74**, 91.
- 182. Adam, W.; Smerz, A. K. Tetrahedron 1996, **52**, 5799.
- 183. Mock-Knoblauch, C.Ph.D. Dissertation, University of Würzburg, 2000.
- 184. Bolli, M. H.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 1998, 2243.
- 185. Lin, H.-C.; Wu, H.-J. Tetrahedron 2000, **56**, 341.
- 186. Bujons, J.; Camps, F.; Messeguer, A. Tetrahedron Lett. 1990, 31, 5235.
- 187. Asouti, A.; Hadjiarapoglou, L. P. Tetrahedron Lett. 2000, 41, 539.
- 188. von Zezschwitz, P.; Voigt, K.; Lansky, A.; Noltemeyer, M., de Meijere, A. J. Org. Chem. 1999, **64**, 3806.
- 189. Gibert, M.; Ferrer, M.; Sánchez-Baeza, F.; Messeguer, A. Tetrahedron 1997, **53**, 8643.
- 190. Abou-Elzahab, M. M.; Adam, W.; Saha-Möller, C. R. Liebigs Ann. Chem. 1992, 731.
- 191. Roush, W. R.; Grover, P. T. Tetrahedron 1992, 48, 1981.
- 192. Piguel, S.; Ulibarri, G.; Grierson, D. S. Tetrahedron Lett. 1999, 40, 295.
- Rodríguez, G.; Castedo, L.; Domínguez, D.; Saá, C.; Adam, W. J. Org. Chem. 1999, 64, 4830.
- 194. Bickers, P. T.; Halton, B.; Kay, A. J.; Northcote, P. T. Aust. J. Chem. 1999, **52**, 647.
- 195. Camps, P.; Font-Bardia, M.; Méndez, N.; Pérez, F.; Pujol, X.; Solans, X.; Vázquez, S.; Vilalta, M. Tetrahedron 1998, **54**, 4679.
- 196. Reisch, J.; Top, M. Pharmazie 1991, **46**, 745; Chem. Abstr. 1992, **116**, 128716u.
- 197. Sakanishi, K.; Kato, Y.; Mizukoshi, E.; Shimizu, K. Tetrahedron Lett. 1994, **35**, 4789.
- 198. Ikeno, T.; Harada, J.; Tomoda, S. Chem. Lett. 1999, 409.
- 199. Sano, H.; Kawata, K.; Kosugi, M. Synlett 1993, 831.
- 200. Roush, W. R.; Marron, T. G. Tetrahedron Lett. 1993, **34**, 5421.
- 201. Park, M.; Gu, F.; Loeppky, R. N. Tetrahedron Lett. 1998, 39, 1287.
- 202. Okazaki, O.; Persmark, M.; Guengerich, F. P. Chem. Res. Toxicol. 1993, 6, 168; Chem. Abstr. 1993, 118, 11872v.
- 203. Ndakala, A. J.; Howell, A. R. J. Org. Chem. 1998, **63**, 6098.
- 204. Adam, W.; Blancafort, L. J. Org. Chem. 1996, 61, 8432.
- 205. Adam, W.; Hadjiarapoglou, L.; Klicic, J. Tetrahedron Lett. 1990, **31**, 6517.
- 206. Lavilla, R.; Gullón, F.; Barón, X.; Bosch, J. J. Chem. Soc., Chem. Commun. 1997, 213.

- 207. Lavilla, R.; Barón, X.; Coll, O.; Gullón, F.; Masdeu, C.; Bosch, J. J. Org. Chem. 1998, 63, 10001.
- 208. Murray, R. W.; Shiang, D. L.; Singh, M. J. Org. Chem. 1991, **56**, 3677.
- 209. Guertin, K. R.; Chan, T.-H. Tetrahedron Lett. 1991, 32, 715.
- 210. Adam, W.; Prechtl, F. Chem. Ber. 1991, **124**, 2369.
- 211. Adam, W.; Peters, E.-M.; Peters, K.; von Schnering, H. G.; Voerckel, V. Chem. Ber. 1992, **125**, 1263.
- 212. Adam, W.; Hadjiarapoglou, L.; Jäger, V.; Seidel, B. Tetrahedron Lett. 1989, **30**, 4223.
- 213. Adam, W.; Hadjiarapoglou, L.; Wang, X. Tetrahedron Lett. 1991, **32**, 1295.
- 214. Baylon, C.; Hanna, I. Tetrahedron Lett. 1995, 36, 6475.
- 215. Adam, W.; Hadjiarapoglou, L.; Seebach, D. unpublished results.
- 216. Chenault, H. K.; Danishefsky, S. J. J. Org. Chem. 1989, **54**, 4249.
- 217. Fujiwara, K.; Tsunashima, M.; Awakura, D.; Murai, A. Chem. Lett. 1997, 665.
- 218. Maynard, G. D.; Paquette, L. A. J. Org. Chem. 1991, **56**, 5480.
- 219. Sayer, J. M.; Servé, P. M.; Jerina, D. M. J. Org. Chem. 1994, **59**, 977.
- 220. Meyer, C.; Spiteller, G. Liebigs Ann. Chem. 1993, 17.
- 221. Silverman, S. K.; Foote, C. S. J. Am. Chem. Soc. 1991, **113**, 7672.
- 222. Troisi, L.; Cassidei, L.; Lopez, L.; Mello, R.; Curci, R. Tetrahedron Lett. 1989, **30**, 257.
- 223. Kopecky, K. R.; Xie, Y.; Molina, J. Can. J. Chem. 1993, **71**, 272.
- 224. Adam, W.; Ahrweiler, M.; Balci, M.; Çakmak, O.; Saha-Möller, C. R. Tetrahedron Lett. 1995, **36**, 1429.
- 225. Gopalakrishnan, S.; Stone, M. P.; Harris, T. M. J. Am. Chem. Soc. 1989, **111**, 7232.
- 226. Saladino, R.; Mezzetti, M.; Mincione, E.; Torrini, I.; Paradisi, M. P.; Mastropietro, G. J. Org. Chem. 1999, **64**, 8468.
- 227. Altamura, A.; Fusco, C.; D'Accolti, L.; Mello, R.; Prencipe, T.; Curci, R. Tetrahedron Lett. 1991, **32**, 5445.
- 228. Lluch, A.-M.; Gibert, M.; Sánchez-Baeza, F.; Messeguer, A. Tetrahedron 1996, **52**, 3973.
- 229. Evans, D. A.; Trotter, B. W.; Côté, B. Tetrahedron Lett. 1998, 39, 1709.
- 230. Meng, D.; Sorensen, E. J.; Bertinato, P.; Danishefsky, S. J. J. Org. Chem. 1996, 61, 7998.
- 231. Savin, K. A.; Woo, J. C. G.; Danishefsky, S. J. J. Org. Chem. 1999, **64**, 4183.
- 232. Russo, A.; DesMarteau, D. D. Angew. Chem., Int. Ed. Engl. 1993, 32,

905.

- 233. Saladino, R.; Bernini, R.; Mincione, E.; Tagliatesta, P.; Boschi, T. Tetrahedron Lett. 1996, **37**, 2647.
- 234. Saladino, R.; Bernini, R.; Crestini, C.; Mincione, E.; Bergamini, A.; Marini, S.; Palamara, A. T. Tetrahedron 1995, **51**, 7561.
- 235. Lupattelli, P.; Saladino, R.; Mincione, E. Tetrahedron Lett. 1993, **34**, 6313.
- 236. Baumstark, A. L.; Harden, D. B., Jr. J. Org. Chem. 1993, **58**, 7615.
- 237. Prechtl, F. Diplomarbeit, University of Würzburg, 1990.
- 238. Baldwin, J. E.; O'Neil, I. A. Tetrahedron Lett. 1990, **31**, 2047.
- 239. Burgess, L. E.; Gross, E. K. M.; Jurka, J. Tetrahedron Lett. 1996, **37**, 3255.
- 240. Coats, S. J.; Wasserman, H. H. Tetrahedron Lett. 1995, **36**, 7735.
- 241. Patonay, T.; Lévai, A.; Nemes, C.; Timár, T.; Tóth, G.; Adam, W. J. Org. Chem. 1996, **61**, 5375.
- 242. Patonay, T.; Tóth, G.; Adam, W. Tetrahedron Lett. 1993, 34, 5055.
- 243. Zander, N.; Langschwager, W.; Hoffmann, H. M. R. Synth. Commun. 1996, **26**, 4577.
- 244. Adam, W.; Schönberger, A. Tetrahedron Lett. 1992, 33, 53.
- 245. Murray, R. W.; Singh, M.; Rath, N. J. Org. Chem. 1997, 62, 8794.
- 246. Crandall, J. K.; Zucco, M.; Kirsch, R. S.; Coppert, D. M. Tetrahedron Lett. 1991, **32**, 5441.
- 247. Adam, W.; Bialas, J.; Hadjiarapoglou, L.; Patonay, T. Synthesis 1992, 49.
- 248. Burke, A. J.; O'Sullivan, W. I. Tetrahedron 1997, **53**, 8491.
- 249. Halász, J.; Tóth, G.; Lévai, A.; Nemes, C.; Jámbor, Z. J. Chem. Res. (S) 1994, 326.
- 250. Adam, W.; Halász, J.; Lévai, A.; Nemes, C.; Patonay, T.; Tóth, G. Liebigs Ann. Chem. 1994, 795.
- 251. Adam, W.; Halász, J.; Jámbor, Z.; Lévai, A.; Nemes, C.; Patonay, T.; Tóth, G. Monatsh. Chem. 1996, **127**, 683.
- 252. Adam, W.; Lévai, A.; Mérour, J.-Y.; Nemes, C.; Patonay, T. Synthesis 1997, 268.
- 253. Adam, W.; Halász, J.; Jámbor, Z.; Lévai, A.; Nemes, C.; Patonay, T.; Tóth, G. J. Chem. Soc., Perkin Trans. 1 1996, 395.
- 254. Fang, F. G.; Danishefsky, S. J. Tetrahedron Lett. 1989, 30, 2747.
- 255. Adam, W.; Ahrweiler, M.; VI c ek, P. J. Am. Chem. Soc. 1995, **117**, 9690.
- 256. Griesbeck, A. G.; Deufel, T.; Hohlneicher, G.; Rebentisch, R.; Steinwascher, J. Eur. J. Org. Chem. 1998, 1759.

- 257. Sieburth, S. M.; McGee, K. F., Jr.; Al-Tel, T. H. Tetrahedron Lett. 1999, **40**, 4007.
- 258. Bovicelli, P.; Lupattelli, P.; Mincione, E.; Prencipe, T.; Curci, R. J. Org. Chem. 1992, **57**, 2182.
- 259. Adam, W.; Jekõ, J.; Lévai, A.; Nemes, C.; Patonay, T. Liebigs Ann. Chem. 1995, 1547.
- 260. Lacroix, I.; Biton, J.; Azerad, R. Bioorg. Med. Chem. 1997, 5, 1369.
- 261. Horie, T.; Shibata, K.; Yamashita, K.; Kawamura, Y.; Tsukayama, M. Chem. Pharm. Bull. 1997, **45**, 446.
- 262. Liu, J.; Mander, L. N.; Willis, A. C. Tetrahedron 1998, 54, 11637.
- 263. Ireland, R. E.; Liu, L.; Roper, T. D.; Gleason, J. L. Tetrahedron 1997, **53**, 13257.
- 264. Corey, P. F.; Ward, F. E. J. Org. Chem. 1986, **51**, 1925.
- 265. Jones, C. W.; Sankey, J. P.; Sanderson, W. R.; Rocca, M. C.; Wilson, S. L. J. Chem. Res. (S) 1994, 114.
- 266. Boehlow, T. R.; Buxton, P. C.; Grocock, E. L.; Marples, B. A.; Waddington, V. L. Tetrahedron Lett. 1998, **39**, 1839.
- 267. Traylor, T. G.; Kim, C.; Richards, J. L.; Xu, F.; Perrin, C. L. J. Am. Chem. Soc. 1995, **117**, 3468.
- 268. Camporeale, M.; Fiorani, T.; Troisi, L.; Adam, W.; Curci, R.; Edwards, J. O. J. Org. Chem. 1990, **55**, 93.
- 269. Gallopo, A. R.; Edwards, J. O. J. Org. Chem. 1981, **46**, 1684.
- 270. Nakamura, N.; Nojima, M.; Kusabayashi, S. J. Am. Chem. Soc. 1987, 109, 4969.
- 271. Schulz, M.; Liebsch, S.; Kluge, R.; Adam, W. J. Org. Chem. 1997, **62**, 188.
- 272. Cristau, H.-J.; Mbianda, X. Y.; Geze, A.; Beziat, Y.; Gasc, M.-B. J. Organomet. Chem. 1998, **571**, 189.
- 273. Denmark, S. E.; Wu, Z. J. Org. Chem. 1997, 62, 8964.
- 274. Suprun, W. Y.; Schulze, D. J. Prakt. Chem. 1997, **339**, 71; Chem. Abstr. 1997, **126**, 143946u.
- 275. Schultz, A. G.; Harrington, R. E.; Tham, F. S. Tetrahedron Lett. 1992, 33, 6097.
- 276. Suh, Y.-G.; Min, K.-H.; Baek, S.-Y.; Chai, J.-H. Heterocycles 1998, **48**, 1527.
- 277. Tsui, H.-C.; Paquette, L. A. J. Org. Chem. 1998, 63, 9968.
- 278a Liang, X.; Kingston, D. G. I.; Lin, C. M.; Hamel, E. Tetrahedron Lett. . 1995, **36**, 2901.
- 278. Altstadt, T. J.; Gao, Q.; Wittman, M. D.; Kadow, J. F.; Vyas, D. M. Tetrahedron Lett. 1998, **39**, 4965.

- 279. Dyker, G.; Hölzer, B. Tetrahedron 1999, 55, 12557.
- 280. Ballistreri, F. P.; Tomaselli, G. A.; Toscano, R. M.; Bonchio, M.; Conte, V.; Di Furia, F. Tetrahedron Lett. 1994, **35**, 8041.
- 281. Ballini, R.; Papa, F.; Bovicelli, P. Tetrahedron Lett. 1996, 37, 3507.
- 282. Adam, W.; Saha-Möller, C. R.; Schmid, K. S. J. Org. Chem. 2001, **66**, 7365.
- 283. van Heerden, F. R.; Dixon, J. T.; Holzapfel, C. W. Tetrahedron Lett. 1992, **33**, 7399.
- 284. Branan, B. M.; Wang, X.; Jankowski, P.; Wicha, J.; Paquette, L. A. J. Org. Chem. 1994, **59**, 6874.
- 285. Wasserman, H. H.; Baldino, C. M.; Coats, S. J. J. Org. Chem. 1995, **60**, 8231.
- 286. Ley, S. V.; Meek, G.; Metten, K.-H.; Pique, C. J. Chem. Soc., Chem. Commun. 1994, 1931.
- 287a Link, J. T.; Danishefsky, S. J.; Schulte, G. Tetrahedron Lett. 1994, **35**, 9131.
- 287. Link, J. T.; Danishefsky, S. J.; Schulte, G. Tetrahedron Lett. 1995, **36**, 3584.
- 288. Messeguer, A.; Sánchez-Baeza, F.; Casas, J.; Hammock, B. D. Tetrahedron 1991, **47**, 1291.
- 289. Simbi, L.; van Heerden, F. R. J. Chem. Soc., Perkin Trans. 1 1997, 269.
- 290. Abad, J.-L.; Casas, J.; Sánchez-Baeza, F.; Messeguer, A. J. Org. Chem. 1993, **58**, 3991.
- 291. Abad, J.-L.; Casas, J.; Sánchez-Baeza, F.; Messeguer, A. Bioorg. Med. Chem. Lett. 1992, **2**, 1239.
- 292. Adam, W.; Corma, A.; Martínez, A.; Mitchell, C. M.; Reddy, T. I.; Renz, M.; Smerz, A. K. J. Mol. Catal. A. 1997, **117**, 357.
- 293. Adam, W.; Mitchell, C. M.; Saha-Möller, C. R. J. Org. Chem. 1999, **64**, 3699.
- 294. D'Accolti, L.; Fiorentino, M.; Fusco, C.; Rosa, A. M.; Curci, R. Tetrahedron Lett. 1999, **40**, 8023.
- 295. Freccero, M.; Gandolfi, R.; Sarzi-Amadè, M. Tetrahedron 1999, **55**, 11309.
- 296. Murray, R. W.; Singh, M.; Williams, B. L.; Moncrieff, H. M. Tetrahedron Lett. 1995, **36**, 2437.
- 297. Kurihara, M.; Ito, S.; Tsutsumi, N.; Miyata, N. Tetrahedron Lett. 1994, **35**, 1577.
- 298. Adam, W.; Brünker, H.-G.; Kumar, A. S.; Peters, E.-M.; Peters, K.; Schneider, U.; von Schnering, H. G. J. Am. Chem. Soc. 1996, **118**, 1899.

- 299. Murray, R. W.; Singh, M.; Rath, N. P. Tetrahedron 1999, 55, 4539.
- 300. Adam, W.; Jekö, J.; Lévai, A.; Majer, Z.; Nemes, C.; Patonay, T.; Párkányi, L.; Sebök, P. Tetrahedron: Asymmetry 1996, **7**, 2437.
- 301. Yang, D.; Tang, Y.-C.; Chen, J.; Wang, X.-C.; Bartberger, M. D.; Houk, K. N.; Olson, L. J. Am. Chem. Soc. 1999, **121**, 11976.
- 302. Cicala, G.; Curci, R.; Fiorentino, M.; Laricchiuta, O. J. Org. Chem. 1982, 47, 2670.
- 303. de Sousa, S. E.; O'Brien, P.; Pilgram, C. D.; Roder, D.; Towers, T. D. Tetrahedron Lett. 1999, **40**, 391.
- 304. Yang, D.; Wong, M.-K.; Cheung, K.-K.; Chan, E. W. C.; Xie, Y. Tetrahedron Lett. 1997, **38**, 6865.
- 305. Brimble, M. A.; Johnston, A. D.; Furneaux, R. H. J. Org. Chem. 1998, **63**, 471.
- 306. Marzabadi, C. H.; Spilling, C. D. J. Org. Chem. 1993, 58, 3761.
- 307. Benbow, J. W.; Katoch, R.; Martinez, B. L.; Shetzline, S. B. Tetrahedron Lett. 1997, **38**, 4017.
- 308. King, S. B.; Ganem, B. J. Am. Chem. Soc. 1994, 116, 562.
- 309. Haag, R.; Zuber, R.; Donon, S.; Lee, C.-H.; Noltemeyer, M.; Johnsen, K.; de Meijere, A. J. Org. Chem. 1998, **63**, 2544.
- 310. Adam, W.; Roschmann, K. unpublished results.
- 311. Linker, T.; Fröhlich, L. J. Am. Chem. Soc. 1995, **117**, 2694.
- 312. Adam, W.; Korb, M. N. Tetrahedron 1996, **52**, 5487.
- 313. Zimmermann, P. J.; Blanarikova, I.; Jäger, V. Angew. Chem., Int. Ed. Engl. 2000, **39**, 910.
- 314. Kurihara, M.; Ishii, K.; Kasahara, Y.; Kameda, M.; Pathak, A. K.; Miyata, N. Chem. Lett. 1997, 1015.
- 315. Tagliatesta, P.; Bernini, R.; Crestini, C.; Monti, D.; Boschi, T.; Mincione, E.; Saladino, R. J. Org. Chem. 1999, **64**, 5361.
- 316. Hambalek, R.; Just, G. Tetrahedron Lett. 1990, **31**, 4693.
- 317. Bols, M.; Hazell, R. G.; Thomsen, I. B. Chem. Eur. J. 1997, **3**, 940.
- 318. Adam, W.; Schuhmann, R. M. J. Org. Chem. 1996, 61, 874.
- 319. Bartels, A.; Jones, P. G.; Liebscher J. Tetrahedron Lett. 1995, 36, 3673.
- 320. Griesbeck, A. G.; Mauder, H.; Müller, I. Chem. Ber. 1992, **125**, 2467.
- 321. Crimmins, M. T.; Jung, D. K.; Gray, J. L. J. Am. Chem. Soc. 1993, **115**, 3146.
- 322. Luker, T.; Hiemstra, H.; Speckamp, W. N. Tetrahedron Lett. 1996, 37, 8257.
- 323. Thompson, S. K.; Heathcock, C. H. J. Org. Chem. 1992, **57**, 5979.
- 324. Asensio, G.; Biox-Bernardini, C.; Andreu, C.; González-Núñez, M. E.;

- Mello, R.; Edwards, J. O.; Carpenter, G. B. J. Org. Chem. 1999, **64**, 4705.
- 325. Nicolaou, K. C.; Prasad, C. V. C.; Ogilvie, W. W. J. Am. Chem. Soc. 1990, **112**, 4988.
- 326. Nan, F.; Chen, X.; Xiong, Z.; Li, T.; Li, Y. Synth. Commun. 1994, **24**, 2319.
- 327. Gerlach, K.; Hoffmann, H. M. R.; Wartchow, R. J. Chem. Soc, Perkin Trans. 1 1998, 3867.
- 328. Randolph, J. T.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, **115**, 8473.
- 329. Linker, T.; Peters, K.; Peters, E.-M.; Rebien, F. Angew. Chem., Int. Ed. Engl. 1996, **35**, 2487.
- 330. Anklam, S.; Liebscher, J. Tetrahedron 1998, 54, 6369.
- 331. Bhatia, G. S.; Lowe, R. F.; Pritchard, R. G.; Stoodley, R. J. J. Chem. Soc., Chem. Commun. 1997, 1981.
- 332. Cambie, R. C.; Grimsdale, A. C.; Rutledge, P. S.; Walker, M. F.; Woodgate, P. D. Aust. J. Chem. 1991, **44**, 1553.
- 333. He, F.; Foxman, B. M.; Snider, B. B. J. Am. Chem. Soc. 1998, **120**, 6417.
- 334. Yang, D.; Ye, X.-Y.; Xu, M. J. Org. Chem. 2000, 65, 2208.
- 335. Gallant, M.; Link, J. T.; Danishefsky, S. J. J. Org. Chem. 1993, 58, 343.
- 336. Chow, K.; Danishefsky, S. J. J. Org. Chem. 1990, **55**, 4211.
- 337. Nemes, C.; Lévai, A.; Patonay, T.; Tóth, G.; Boros, S.; Halász, J.; Adam, W.; Golsch, D. J. Org. Chem. 1994, **59**, 900.
- 338. Link, J. T.; Gallant, M.; Danishefsky, S. J.; Huber, S. J. Am. Chem. Soc. 1993, **115**, 3782.
- 339. Gervay, J.; Peterson, J. M.; Oriyama, T.; Danishefsky, S. J. J. Org. Chem. 1993, **58**, 5465.
- 340. Smith, S. C.; Heathcock, C. H. J. Org. Chem. 1992, **57**, 6379.
- 341. Berkowitz, D. B.; Danishefsky, S. J.; Schulte, G. K. J. Am. Chem. Soc. 1992, **114**, 4518.
- 342. Grieco, P. A.; Henry, K. J.; Nunes, J. J.; Matt, J. E., Jr. J. Chem. Soc., Chem. Commun. 1992, 368.
- 343. Hosoyama, H.; Shigemori, H.; In, Y.; Ishida, T.; Kobayashi, J. Tetrahedron 1998, **54**, 2521.
- 344. Nicolaou, K. C.; He, Y.; Vourloumis, D.; Vallberg, H.; Roschangar, F.; Sarabia, F.; Ninkovic, S.; Yang, Z.; Trujillo, J. I. J. Am. Chem. Soc 1997, 119, 7960.
- 345. Krohn, K.; Micheel, J. Tetrahedron 1998, **54**, 4827.
- 346. Nicotra, F.; Panza, L.; Russo, G. Tetrahedron Lett. 1991, 32, 4035.
- 347. Timmers, C. M.; van der Marel, G. A.; van Boom, J. H. Recl. Trav. Chim.

- Pays-Bas 1993, **112**, 609.
- 348. Dushin, R. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1992, **114**, 3471.
- 349. Gervay, J.; Danishefsky, S. J. J. Org. Chem. 1991, **56**, 5448.
- 350. Nicolaou, K. C.; Ninkovic, S.; Sarabia, F.; Vourloumis, D.; He, Y.; Vallberg, H.; Finlay, M. R. V.; Yang, Z. J. Am. Chem. Soc. 1997, **119**, 7974.
- 351. Curci, R.; Detomaso, A.; Prencipe, T.; Carpenter, G. B. J. Am. Chem. Soc. 1994, **116**, 8112.
- 352. Marples, B. A.; Muxworthy, J. P.; Baggaley, K. H. Tetrahedron Lett. 1991, **32**, 533.
- 353. Park, T. K.; Peterson, J. M.; Danishefsky, S. J. Tetrahedron Lett. 1994, 35, 2671.
- 354. Paquette, L. A.; Zhao, M. J. Am. Chem. Soc. 1998, 120, 5203.
- 355. Paquette, L. A.; Zhao, M. J. Am. Chem. Soc. 1993, 115, 354.
- 356. Charette, A. B.; Côté, B. Tetrahedron: Asymmetry 1993, 4, 2283.
- 357. Park, T. K.; Danishefsky, S. J. Tetrahedron Lett. 1994, 35, 2667.
- 358. Gordon, D. M.; Danishefsky, S. J. J. Am. Chem. Soc. 1992, 114, 659.
- 359. Ireland, R. E.; Armstrong, J. D.; Lebreton, J.; Meissner, R. S.; Rizzacasa, M. A. J. Am. Chem. Soc. 1993, **115**, 7152.
- 360. White, J. D.; Hong, J.; Robarge, L. A. J. Org. Chem. 1999, 64, 6206.
- 361. Veras, A. T.; Gundersen, L.-L.; Rise, F. Tetrahedron 1997, **53**, 1777.
- 362. Lay, L.; Nicotra, F.; Panza, L.; Russo, G. Synlett 1995, 167.
- 363. Takikawa, H.; Muto, S.-e.; Mori, K. Tetrahedron 1998, **54**, 3141.
- 364. Friesen, R. W.; Sturino, C. F. J. Org. Chem. 1990, **55**, 5808.
- 365. Liu, K. K.-C.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 4933.
- 366. Liu, K. K.-C.; Danishefsky, S. J. J. Org. Chem. 1994, **59**, 1895.
- 367. Izzo, I.; De Riccardis, F.; Sodano, G. J. Org. Chem. 1998, **63**, 4438.
- 368. Shu, L.; Shi, Y. Tetrahedron Lett. 1999, 40, 8721.
- 369. Brown, D. S.; Marples, B. A.; Smith, P.; Walton, L. Tetrahedron 1995, **51**, 3587.
- 370. Warren, J. D.; Shi, Y. J. Org. Chem. 1999, **64**, 7675.

# [3+2] Cycloaddition of Trimethylenemethane and its Synthetic Equivalents

Shigeru Yamago, Kyoto University, Kyoto, Sakyo-ku, Japan Eiichi Nakamura, The University of Tokyo, Tokyo, Bunkyo-ku, Japan

## 1. Introduction

Trimethylenemethane (TMM, 1) is a non-Kekulé molecule composed of four carbons, six hydrogens, and four  $\pi$  -orbitals. Therefore, TMM can only be expressed as resonance structures involving 1,3-diyls and zwitterions (Eq. 1). The two degenerate nonbonding molecular orbitals in the Hückel molecular orbital of 1 as shown below indicate the existence of singlet and triplet electronic configurations which play significant roles in the TMM chemistry.

TMMs were imaginary molecules until the late 1960's, and parent TMM (1) was first isolated in a low-temperature matrix. (1-3) It is stable for several weeks at

77 K, and is a ground-state triplet with a  $D_{3h}$ -planar structure as assigned by ESR spectroscopy. (4, 5) The unique structures coupled with the complex electronic states of TMM derivatives have been topics of theoretical, mechanistic, and synthetic studies.

By analogy with the Diels-Alder reaction for the synthesis of six-membered rings through [4 + 2] cycloadditions, the use of TMM as a three-carbon unit for [3 + 2] cycloadditions appears to represent a viable synthetic possibility (Eq. 2), because the

four  $\pi$  -electron orbital system of TMM is theoretically suitable for the [4  $\pi$  s + 2  $\pi$  s] cycloaddition. As expected, however, rapid ring closure to methylenecyclopropane (MCP) is preferred to cycloaddition with a 2  $\pi$  acceptor as shown in Eq. 2. (6, 7) Therefore, for synthetic use, tailor-made derivatives of TMM and its equivalents need to be designed to achieve [3 + 2] cycloaddition reactions.

The first breakthrough in the use of TMMs for [3 + 2] cycloaddition reactions was reported in the reaction of isopropylidenecyclopentane-1,3-diyl (2, Eq. 3), which has a considerable lifetime and reacts with electron-deficient alkenes. (8, 9) Structural constraints in intermediate 2 retard cyclization to the corresponding MCPs and increase the efficiency of the intermolecular reaction with a 2  $\pi$  acceptor. Whereas stereochemical control of the reaction is difficult, intramolecular versions attain high levels of stereoselectivity and are used for various cyclopentanoid syntheses. (10-13)

$$\underbrace{ }_{2} \cdot \underbrace{ }_{2} \quad \underbrace{ }_{and/or} \quad \underbrace{ }_{3)$$

Because the parent TMM 1 gives methylenecyclopropane and many MCP derivatives undergo thermal isomerization, MCPs have been considered to

serve as precursors for TMMs. (14, 15) However, direct evidence for the formation of TMMs from MCPs and their synthetic use as TMM precursors was rather scant until recently. Alkoxy substitution on the cyclopropane ring of MCPs dramatically alters their reactivity as well as the nature of the generated TMM species. A gem-dialkoxy TMM, 3 (Eq. 4), generated thermally from a dialkoxy MCP, is a short-lived intermediate that has a polar and singlet nature and reacts with high stereoselectivity with 2  $\pi$  acceptors. (16, 17)

Since TMM species are generally too short-lived and too reactive to be used for organic synthesis, various attempts have been made to stabilize them with transition metal templates. A variety of metal-TMM complexes have been synthesized after the first isolation of Fe(  $\eta$  ⁴–TMM)(CO)₃, (18-20) but these complexes are often too stable to react with  $2\pi$  acceptors.

Efficient transition metal catalyzed TMM cycloaddition is achieved using MCPs and Ni(0) or Pd(0) catalysts. (21-24) The reaction proceeds via ring opening of the MCP to form (methylene)metallacyclobutane-type intermediates (Eq. 5). This reaction is more complex than it appears, as substrate, catalyst, and acceptor can influence

$$\begin{array}{c|c}
 & Ni(0) \text{ or } Pd(0) \\
 & M
\end{array}$$
and/or
$$M = Ni \text{ or } Pd$$
(5)

the regiochemistry of the cyclopropane ring cleavage. Although the detailed mechanism of the reaction is still unclear, the involvement of a TMM-metal complex 4 has been proposed in some reactions.

More recently, Pd(0)-catalyzed reactions of [2-(acetoxymethyl)allyl]trimethylsilane with 2  $\pi$  acceptors have emerged as a powerful method for cyclopentane synthesis. (25-28) This reaction is

considered to involve the zwitterionic TMM-Pd intermediate, **5** (Eq. 6). The reaction serves well for the [3 + 2] cycloaddition to electron-deficient acceptors, and it has been applied to the synthesis of several cyclopentanoid natural products.

$$\begin{array}{c|c}
 & Pd(0) \\
\hline
 & -Me_3SiOAc
\end{array}$$
(6)

This review surveys the [3+2] cycloaddition reactions of TMMs and their metal complexes to  $2\pi$  acceptors. The reactions are divided into five categories, defined by reaction types and precursors: (1) cycloadditions of free TMMs generated from diazenes, (2) cycloadditions of free TMMs generated from MCPs, (3) transition metal catalyzed reactions of MCPs, (4) transition metal catalyzed reactions of silylated allylic acetates, and (5) cycloaddition of stable TMM-metal complexes. Transformations that accomplish a net cycloaddition but require several steps using TMM equivalents are not covered. Various aspects of TMMs, including physical and synthetic chemistry, have already been reviewed. (2, 3, 9-13, 22-34)

### 2. Mechanism and Selectivities

## 2.1. Free Trimethylenemethanes from Diazenes

#### 2.1.1. Generation

Free TMMs can often be made from diazenes. For example, bicyclic diazene 6 is the most commonly used precursor of the TMM 2 (Eq. 7). (8, 9)

Thermolysis above 40° or photolysis of diazene 6 smoothly generates TMM 2 with loss of nitrogen. The latter has a considerable lifetime because of the structural restrictions that prevent ring closure to the corresponding MCP 7. TMM 2 undergoes cycloaddition to an electron-deficient alkene to afford a mixture of a fused adduct 8 and a bridged adduct 9 (Eq. 7). (35, 36) In the absence of an alkenic acceptor (or with an unreactive acceptor) dimerization of TMM 2 occurs. MCP 7 and diazene 10 also serve as precursors of TMM 2, but they are of limited synthetic utility owing to the difficulty of their preparation and/or their instability.

The chemical reactivities of biradical species depend critically on their electronic configuration, which, in turn, is related to the conformation of the biradicals. TMM 2 is stable at 77 K and is a ground-state triplet. The singlet state is estimated to lie less than 1.4–3.5 kcal/mol above the triplet. Because the energy gap between the singlet and the triplet is small, spin equilibrium between these two states occurs readily. (37-39) Therefore, under thermal

conditions, the initially formed singlet state of TMM 2 undergoes intersystem crossing to the triplet, and the dimerization of TMM 2 takes place even in the presence of a diyl acceptor. Singlet TMM can be selectively channeled to undergo a [3 + 2] cycloaddition by conducting the reaction under a high concentration of an alkene acceptor or in the presence of a triplet scavenger, such as oxygen. On the other hand, the triplet state can be selectively generated under photosensitization. (40) Although TMM 2 and its derivatives are short lived (for example, in the case of TMM 2, 0.28 ns lifetime for the singlet and 916 ns for the triplet), they participate in a wide range of reactions. (13)

#### 2.1.2. Structure of the TMM

Although diazene 6 possesses chemically nonequivalent exo and endo hydrogens, the corresponding geminal hydrogens are chemically equivalent in TMM 2. Deuterium labeling experiments in the cycloaddition of exo deuterated 6-d₂ with dimethyl maleate indeed gives a 1:1 mixture of bridged products (Eq. 8). (41) This experiment shows that any asymmetric species formed in the decomposition of 6-d₂ become effectively symmetric before trapping by the alkenic diylophile.

#### 2.1.3. Regioselectivity

Singlet TMM 2 adds to an alkene with high regioselectivity, giving the fused cycloadduct 8 in preference to the bridged adduct 9 in a ratio of 31–75:1 under thermal conditions (Eq. 7). On the other hand, the cycloaddition of triplet 2 with an alkene shows very low regioselectivity, the 8:9 ratio ranging from 0.8 to 2.7:1. (36) In good agreement with the radical nature of the TMM species, the effect of solvent polarity on the product composition is small.

#### 2.1.4. Periselectivity

The reaction of TMMs with dienes potentially gives a mixture of [3 + 2] cycloadduct and [3 + 4] cycloadduct, which gives rise to an issue of periselectivity. Acyclic dienes preferentially give fused [3 + 2] cycloadducts, whereas cyclic dienes give a mixture of [3 + 2] and [3 + 4] cycloadducts. For example, the photolysis of diazene 11 in the presence of cyclopentadiene

gives a 3:1 mixture of the fused [3 + 2] cycloadduct and the bridged [3 + 4] cycloadduct, which are derived from the singlet TMM generated from 11 (Eq. 9). (42) This result most likely arises from the frontier orbital control in the reaction as discussed below.

$$\frac{11}{N}$$
 +  $\frac{\text{hv (350 nm)}}{0^{\circ}, \text{ neat}}$  +  $\frac{\text{hv (350 nm)}}{23\%}$  +  $\frac{\text{hv (9)}}{23\%}$ 

#### 2.1.5. Stereospecificity

As in reactions of carbenes, the configuration of the alkene is maintained in the cycloaddition of a singlet TMM, but is not retained in the reaction of a triplet TMM (Eq. 10). (39) Cycloaddition of the singlet TMM 2 generated from diazene 6 with dimethyl fumarate or dimethyl maleate in the presence of molecular oxygen (triplet trap) exclusively gives the fused product ( $\mathbf{F}$ ) with high regioselectivity. The high stereospecificity for the singlet cycloaddition suggests that the reaction proceeds via a highly ordered transition-state structure wherein the two new C - C bonds are formed almost simultaneously. On the other hand, loss of stereochemical integrity is observed in the absence of molecular oxygen for both the fused product ( $\mathbf{F}$ ) and the bridged product ( $\mathbf{B}$ ), indicating that cycloaddition of the triplet takes place in a stepwise manner.

$$MeO_2C$$
 $CO_2Me$ 
 $MeCN, 60^\circ$ 
 $MeCN, 60^\circ$ 
 $MeO_2C$ 
 $CO_2Me$ 
 $E$ 
 $CO_2Me$ 
 $E$ 

olefin conc. ([M]) 
$$O_2$$
  $F$  (trans:cis) :  $B$  (trans:cis)  $E$  (0.224)  $E$  (0.224)  $E$  (0.075)  $E$  (0.075)  $E$  (0.515)  $E$  (0.515)  $E$  (0.007)  $E$  (0

The regioselectivity as well as the stereospecificity in the singlet cycloaddition is believed to operate under frontier orbital control. In TMM 2, the two degenerate nonbonding molecular orbitals (NBMO) are symmetric (S) and antisymmetric (A) with respect to a symmetry plane. The periselectivity in the cycloaddition of TMM



**2** (R = Me) with a diene suggests that the S orbital is the HOMO of the TMM, and that the HOMO of the TMM and the LUMO of the diene interact in a symmetry-allowed fashion to promote the [3 + 4] addition, thus leading to a bridged structure (Eq. 11). (42) In the cycloaddition with simple alkenes, a symmetry-allowed interaction between the HOMO of the TMM and the LUMO of the double bond gives the fused [3 + 2] cycloadduct (Eq. 12).

#### 2.1.6. Substituent Effects

Polar R substituents will lift the degeneracy of the NBMOs of the TMM and alter its reactivity and selectivity. (43) An electron-withdrawing R group stabilizes the S-NBMO, and an electron-donating group stabilizes the A-NBMO. Therefore, the HOMO of the alkoxy-substituted TMM (R = OMe) is an A-NBMO, thus allowing the reaction with alkenes to give the bridged adduct with high stereospecificity, as would be expected for a concerted singlet reaction (Eq. 13). (44) Although electron-withdrawing groups are also expected to lift the degeneracy, no such examples have been reported so far.

MeO OMe 
$$\frac{-20^{\circ}}{N}$$
 MeO OMe  $\frac{E}{E}$  MeO OMe  $\frac{E}{E}$  (13)

# 2.2. Dipolar Trimethylenemethanes from methylenecyclopropanes 2.2.1. Generation

The reaction of TMMs generated from a monocyclic MCP is strongly affected by the substituents on the MCP ring. Several examples of intramolecular rearrangement of MCPs are known, which may involve TMM intermediates. (14, 15, 45-47) However, these putative TMM species are usually unreactive in [3 + 2] cycloadditions and instead give [2 + 2] or [2 + 4] cycloadducts in which the cyclopropyl group remains intact.

Heteroatom substitution on the cyclopropyl ring exerts pronounced effects on the properties of MCPs and TMMs. (34) 1,1-Dialkoxy-2-MCP 12 generates the dialkoxy TMM 3 upon mild thermolysis above 40° (Eq. 14). (48) One of the typical features of

this process is its reversibility, and degenerate rearrangement takes place in the absence of an alkenic acceptor. The dialkoxy groups dramatically facilitate the MCP rearrangement. The activation energy of the degenerate isomerization of MCP 12 is 22–25 kcal/mol, which is much lower than the value determined for the parent MCP (41.2 kcal/mol) (Eq. 14). (49) Heteroatom substitution also alters the electronic state of the TMM, and TMM 3 behaves as the zwitterion 3ii rather than the diradical 3i. The dialkoxy TMM 3 has nucleophilic character and undergoes cycloaddition with electron-deficient alkenes rather than with electron-rich alkenes. Isomer 13 is obtained exclusively when the R group on the alkene is a moderately electron-withdrawing group, whereas a mixture of products 13 and 14 is obtained when R is a powerful electron-withdrawing group such as a nitro group.

Degenerate isomerization of MCP 12 by way of TMM 3 is usually faster than cycloaddition to an external unsaturated linkage. In ¹³C labeling experiments, the methylene-labeled methylenecyclopropane 12i isomerized to its cyclopropanelabeled isomer 12ii prior to the cycloaddition, even when a reactive diylophile such as dimethyl fumarate was used (Eq. 15). (50)

TMM **16** is thermally generated from fluorene-substituted MCP **15**, and it reacts with electron-deficient alkenes (for **15a**) to give isomeric [3 + 2] cycloadducts (Eq. 16). (51) Both TMMs **16a** and **16b** possess triplet character and react readily with molecular oxygen.

$$R = F$$

$$R =$$

It is rather surprising that the structurally related diphenyl-substituted MCP 17 does not react with alkenes or molecular oxygen through a TMM intermediate under thermal conditions (Eq. 17). (51-53) Degenerate isomerization of MCP 17 takes place with an activation energy of 22.7 kcal/mol. (54) This value is almost identical to that of the dialkoxy MCP 12. These results may be attributed to insufficient equilibrium concentration of the TMM species. Under photosensitization, MCP 17 reacts with molecular oxygen to give the corresponding peroxy compound 18 (Eq. 17). (51) The reaction is believed to proceed through a bisected radical cation TMM 19.

Ph heat or hv sens.

$$R = H \text{ or } D$$

Ph Ph  $Ph$ 
 $R = H \text{ or } D$ 

Ph Ph  $Ph$ 
 $R = H$ 

Ph Ph  $Ph$ 

Ph Ph  $Ph$ 

Ph Ph  $Ph$ 

Ph Ph  $Ph$ 

### 2.2.2. Structure of TMMs

In contrast to dialkoxy MCP 12, the two terminal methylene groups in dialkoxy TMM 3 are chemically equivalent. Thermolysis of  13 C-labeled MCP 12i in CD₃OD gives orthoesters of methyl acrylate 20i and 20ii, wherein complete scrambling of the  13 C label occurs with specific placement of a deuterium on the allylic methyl group (Eq. 18). (48) This experiment clearly indicates the formation of a symmetrical zwitterionic TMM species 3, in which the two methylene groups are nucleophilic and chemically equivalent (as seen by CD₃OD). Theoretical calculations also support the dipolar character of 3. (48)

Substituted dialkoxy TMM species can be formed stereospecifically from the corresponding dialkoxy MCPs. In situ methanolysis of E and Z isomers of methyl-substituted MCPs 21E and 21Z gives E- and Z-tiglate orthoesters 23E and 23Z with 100% and 93% retention of the configuration of the starting alkenes, respectively (Eqs. 19 and 20). (48) This stereospecificity reveals that isomeric TMMs 22E and 22Z are generated from the corresponding E and E MCPs, and that they exist as discrete intermediates. The methanolysis of the isomeric methyl-substituted dialkoxy MCP also gives E-tiglate orthoester 23E with 100% specificity. Some loss of the stereospecificity from MCP 21Z to product 23Z indicates that orthoester 22Z is less thermodynamically

stable than its isomer 22E, and that intermediate 22Z to some extent undergoes bond rotation to form intermediate 22E. In addition, since the generation of Z-TMM 22Z from MCP 21Z is much slower than that of E-TMM 22E from MCP 21E, only the E-TMM participates in the cycloaddition reaction.

23Z

# 2.2.3. Regioselectivity

Whereas the cycloaddition of MCP 12 with an electron-deficient alkene usually gives a ketene acetal cycloadduct 24, cycloaddition with a more highly electron-deficient alkene gives a mixture of 24 and a regioisomeric exomethylene isomer 25 (Eq. 21). (55) Formation of isomer 24 is predominant with moderately electron-deficient alkenes, such as X = ester, ketone; Y = H, alkyl; Z = H, alkyl. Formation of product 25 is general for an alkene whose reduction potential is larger than -1.8 V (vs. SCE) such as  $X = Y = \text{CO}_2\text{Me}$ , Z = alkyl. The isomer ratio of products 24 to 25 is highly dependent on the nature of the electron-withdrawing group and the substitution patterns.

# 2.2.4. Stereospecificity

The cycloaddition of MCP 12 with moderately electron-deficient alkenes is highly stereospecific. The reactions with the E and Z isomers of methyl 2-heptenoate give ketene acetal products with 100% and 98% retention of configuration, respectively (Eqs. 22 and 23). (16) The high stereospecificity and the negligible solvent effect suggest that the cycloaddition proceeds through a highly ordered transition state in which the allylic carbon of 3 serves as a  $4\pi$  electron system in a concerted cycloaddition with a  $2\pi$  acceptor.

$$n$$
-Bu  $rac{70^{\circ}, 26 \text{ h}}{CO_{2}\text{Me}}$   $rac{70^{\circ}, 26 \text{ h}}{CO_{2}\text{Me}}$  (22)

Cycloadditions of MCP 12 with highly electron-deficient alkenes show a rather complex reactivity profile. Thus, whereas the alkene geometry is retained in the ketene acetal adduct, stereochemical mutation is observed in the exomethylene product (Eqs. 24 and 25). (55) Formation of the latter proceeds via a single-electron transfer pathway.

100% trans (96%) 1:2.4 79% trans

98% cis (97%) 1:2.3 60% trans

# 2.2.5. Stereoselectivity

The cycloaddition of the substituted dialkoxy TMM with alkenes proceeds regioselectively with high endo selectivity. (56) The reaction of MCP 21E with dimethyl maleate gives the endo product 26 and the exo product 27 (Eq. 26). The endo: exo isomer ratio exhibits a notable dependence on the solvent polarity, decreasing dramatically from 32:1 to 2.7:1 as the polarity of the solvent is

increased from octane ( $\epsilon$  = 1.9) to DMSO ( $\epsilon$  = 46.7). The observed polar effect is consistent with the endo transition state **28**, wherein polar interactions between the directing groups control the stereoselectivity.

Complete endo selectivity is observed in the cycloaddition of MCP 21E with methyl *trans*-crotonate and methyl methacrylate, but equal amounts of the regioisomers 30 and 31 are formed (Eq. 27). (56) However, when R¹ and R² are bulky in endo transition state 33, a high level of regiocontrol is achieved because of the severe steric interaction between the two substituents. This unfavorable interaction does not occur in transition state 32. Therefore, isopropyl-substituted MCP 29 reacts with methyl *trans*-crotonate to give a single endo adduct, with other isomers accounting for only 4% of the cycloadducts. Similarly, methyl (*E*)-4,4-dimethyl-2-pentenoate, bearing a bulky substituent (R²) on the alkene, reacts with MCP 21E to give a single cycloadduct in more than 97% isomeric purity.

$$30 \longrightarrow \begin{array}{c} O^{\delta + \delta} \\ O \\ E \\ \hline R^{3} \end{array} \longrightarrow \begin{array}{c} O^{\delta + \delta} \\ O \\ \hline R^{1} \\ \hline R^{2} \end{array} \longrightarrow \begin{array}{c} 31 \\ \hline R^{2} \\ \hline \end{array}$$

# 2.3. Transition Metal Catalyzed Reactions of methylenecyclopropanes 2.3.1. Generation

Methylenecyclopropanes undergo [3 + 2] cycloaddition reactions with alkenes in the presence of Ni(0) or Pd(0) catalysts. (23, 24) The transformations can be formally regarded as reactions of metallacyclobutane intermediates 35 and 37, generated by oxidative addition into the proximal or distal bond of methylenecyclopropane (34), respectively. Subsequent alkene insertion followed by reductive elimination leads to the formation of cyclopentane derivatives 36 and 38 (Eq. 28).

proximal ring opening 
$$X=Y$$

M = Ni or Pd

distal ring opening  $X=Y$ 

M = Ni or Pd

 $X=Y$ 
 $X=Y$ 

Mechanistic studies and theoretical calculations suggest that the Pd(0)-catalyzed reaction proceeds by direct attack of the distal bond of MCP on the double bond of the alkene-metal complex to generate  $\pi$  -allyl palladium complex 39, although a mechanism that involves a palladacyclobutane intermediate 40 cannot be completely ruled out (Eq. 29). (33, 57-59) Mechanistic details of the Ni(0)-catalyzed reaction are unknown.

The most commonly used Ni(0) catalysts are Ni(acrylonitrile)₂ [Ni(an)₂], Ni(1,5-cyclooctadiene)₂ [Ni(cod)₂], and triarylphosphine modified Ni(cod)₂. Addition of a phosphine ligand usually retards the cycloaddition and also alters the regioselectivity of the ring opening. Pd(0) catalysts usually require a phosphine ligand, and i-Pr₃P is most commonly used. Although the reactivities of Pd catalysts are lower than Ni catalysts, the reaction is more predictable, making Pd catalysts synthetically more valuable.

# 2.3.2. Regioselectivity

The regiochemical course of the ring opening is highly dependent on the substitution pattern of the substrate and the nature of the catalyst. Ni(0) catalysts preferentially give the cycloadduct by proximal ring opening, whereas Pd(0) catalysts promote distal ring opening (Eq. 30). (60, 61)

With Ni(0) catalysts, the selectivity of cyclopropane ring opening is also highly dependent on the olefinic substrate and the MCP substituent. For example, although cycloaddition of the parent MCP (34) with dimethyl maleate gives products predominantly derived from proximal ring opening, that with dimethyl fumarate gives a mixture in which the product of proximal ring opening slightly predominates

Ni(cod)₂, Ph₃P (55%) toluene, 80-100° 
$$trans: cis = 3.5:1$$
 (30)  $Pd(dba)_2, i-Pr_3P$  toluene, 100°  $CO_2Me$ 

(Eq. 31). (62) Ligands also affect the selectivity, and phosphine- or phosphite-modified Ni catalysts favor distal bond cleavage. However, there is no clear rationale for this trend.

The reaction of monosubstituted MCPs leads to distal and proximal ring opening. MCPs that are disubstituted at the cyclopropyl or vinylic carbon mainly undergo distal ring opening. Therefore, isomeric MCPs with substitution at the cyclopropyl carbon and at the olefinic carbon give isomeric cycloadducts (Eqs. 32 and 33). (63) When the substitution is on the cyclopropane ring, the ring opening takes place selectively at the less substituted side.

In the presence of a Pd(0) catalyst, all types of MCPs undergo distal ring opening regardless of the substitution pattern. Aryl-substituted MCPs give exclusively alkylidene-type adducts regardless of the starting MCP (Eq. 34). (64)

# 2.3.3. Stereospecificity

Although the geometry of the alkene is maintained in the nickel-catalyzed reaction of trans alkenes (Eq. 35), partial to complete scrambling of

configuration is observed in cycloadditions of cis alkenes (Eq. 36). (65) These results clearly show the stepwise nature of the cycloaddition through two discrete C-C bond forming processes.

$$+ \frac{\text{MeO}_{2}\text{C}}{\text{CO}_{2}\text{Me}} = \frac{\text{Ni(cod)/Ar}_{3}\text{P}}{\text{toluene, } 120^{\circ}} + \frac{\text{MeO}_{2}\text{C}}{\text{CO}_{2}\text{Me}} + \frac{\text{MeO}_{2}\text{C}}{\text{CO}_{2}\text{Me}}$$
(35)

Ph 
$$\rightarrow$$
 Ph  $\rightarrow$  P

The double bond geometry is also not preserved in Pd-catalyzed reactions (Eq. 37). (22, 60) The level of the stereospecificity is highly dependent on the ligands. These results are consistent with a stepwise mechanism.

# 2.4. Transition Metal Catalyzed Reactions of Silylated Allylic Acetates 2.4.1. Generation

A zwitterionic TMM–Pd complex **5** is typically generated in situ via a Pd-catalyzed reaction of 1-(acetoxymethyl)allyltrimethylsilane (**41**) (Eq. 38). (26)

$$\begin{array}{c|c}
 & Pd(0) \\
Me_3Si & OAc
\end{array}
\begin{array}{c|c}
 & Pd^+ \\
Me_3Si & OAc
\end{array}
\begin{array}{c|c}
 & Pd^+ \\
\hline
 & EWG
\end{array}$$
(38)

lonization of **41** by Pd(0) generates the  $\pi$  -allylpalladium species **42**, which undergoes acetate anion promoted desilylation to form the zwitterionic TMM-Pd complex **5**, the formation of which is supported by labeling experiments and theoretical calculations. (66-68) Complex **5** is nucleophilic in nature, and undergoes cycloaddition with electron-deficient alkenes to form methylenecyclopentane derivatives. (69)

Allylic carbonate 43 bearing an anion-stabilizing functional group, for example R = CN and  $SO_2Tol$ , also undergoes [3 + 2] cycloaddition in the presence of Pd(0) catalysts (Eq. 39). (70) In this reaction, the ionization of substrate 43 with Pd(0) generates

$$\begin{array}{c}
Pd(0) \\
R
\end{array}$$

$$\begin{array}{c}
Pd(0) \\
R
\end{array}$$

$$\begin{array}{c}
EtO^{-} \\
R
\end{array}$$

$$\begin{array}{c}
Pd^{+} \\
R
\end{array}$$

$$\begin{array}{c}
Pd^{+} \\
R
\end{array}$$

$$\begin{array}{c}
EWG \\
EWG
\end{array}$$

an alkoxide which serves as a base to deprotonate the  $\pi$  -allyl intermediate 44. The resulting zwitterionic TMM–Pd intermediate undergoes cycloaddition to electron-deficient alkenes.

# 2.4.2. Stereospecificity

The reaction of **5** with alkenes exhibits moderate to high stereospecificity. In the reaction of methyl crotonate with **5**, the E isomer reacts stereospecifically, whereas the Z isomer reacts with significant loss of geometric integrity (Eqs. 40 and 41). (71)

CO₂Me 
$$Pd(OAc)_2/i-Pr_3P$$
 +  $CO_2Me$   $CO_2Me$  (41)

Since no detectable geometric isomerization of the starting alkenes is observed, the loss of stereospecificity must occur during ring closure. These results show that [3 + 2] cycloaddition takes place in a stepwise manner. Thus, Michael addition of the zwitterionic TMM–Pd complex 5 to an electron-deficient alkene generates stabilized zwitterion 45 that has a sufficient lifetime to undergo bond rotation before collapse to form the cycloadduct (Eq. 42). (67, 69) Despite the loss of stereochemical information of the alkenes to the products, a concerted mechanism has been proposed recently based on carbon kinetic isotope effects. (72)

The reaction of trisubstituted alkenes is virtually completely stereospecific (Eqs. 43 and 44). (71) The observed high stereospecificity suggests that the zwitterionic intermediate, such as 44, has a rather short lifetime and compact structure, because bond rotation is completely blocked by the  $\alpha$ -methyl group. These observations indicate that the cycloaddition takes place in a stepwise

manner, in which the transition state geometries resemble what may be expected for a concerted cycloaddition.

Ph 
$$CO_2Et$$
  $Pd(OAc)_2/i-Pr_3P$   $CO_2Et$   $CO_2Et$   $Ph$   $CO_2Et$   $Ph$   $CO_2Et$   $CO_2$ 

Ph 
$$O_2$$
Et  $O_2$ ET  $O$ 

# 2.4.3. Stereoselectivity

In the reactions of the TMM intermediate **5** (generated in situ from acetate **41**) the new C-C bond is formed with net retention of configuration with respect to the face of the allyl unit. The cycloaddition of the allylic carbonate derived from carveol shows a unique donor-dependent stereoselectivity. Reaction of the trans and cis derivatives **46** and **48** with dimethyl benzylidenemalonate gives exclusively 1,3-*trans*-**47** and 1,3-*cis*-**49**, respectively (Eqs. **45** and **46**). (73) The initial Pd–assisted ionization occurs with inversion of configuration, and the new C-C bond

SiMe₃
OCO₂Me
H

Cat.

$$E = CO_2$$
Me
THF, reflux

(46)

Cat. = Pd(OAc)₂/BuLi/Ph₃P

also forms with inversion. The results indicate that the approach of the alkene takes place from the side anti to the TMM-Pd species rather than from the inside after coordination of the alkene to the metal TMM species. Even though the starting materials are enantiomerically enriched, the products are racemic because of the rapid isomerization of the enantiomeric TMM-Pd complexes.

# 2.4.4. Regioselectivity

The cycloaddition of a substituted TMM-Pd complex with an alkene shows remarkable regioselectivity. Although the cycloaddition of substituted TMM species potentially can give two regioisomeric cycloadducts, in fact 52 is formed selectively regardless of both the structure of the starting acetoxymethylallyltrimethylsilanes, or of the electron-donating and electron-withdrawing nature of the R group (Eq. 47). (74, 75) This result may be rationalized by considering the rapid equilibrium of the TMM-Pd complexes and their relative stabilities and reactivities. One possible rationale is that the substituted TMM-Pd complex 51 (kinetically generated from the corresponding TMM precursors) rapidly isomerizes to the thermodynamically more stable isomer 50, which then gives rise to product 52. An alternative possibility is that the most negatively charged carbon on TMM-Pd complex 50 preferentially attacks the electron-deficient alkene regardless of the stabilities of the intermediates; theoretical calculations support this view. (68)

# 2.4.5. Diastereoselectivity

The 1,2-asymmetric induction in the cycloaddition of **5** shows moderate to high diastereoselectivity depending on the alkene acceptors. The cycloaddition of TMM–Pd complex **5** (generated from acetate **41**, Eq. 38) with *E*-enoate **53a** ( $R = CMe_2$ ) in toluene at 80° gives the two cycloadducts **54a** and **55a** in a 3.2:1 ratio (Eq. 48). (76) The major isomer arises from reactive conformation **56** 

MeO₂C 
$$\frac{41}{\text{Pd(Ph}_{3}\text{P)}_{4} (\text{cat.})}$$
  $\frac{41}{\text{Pd(Ph}_{3}\text{P)}_{4} (\text{cat.})}$   $\frac{H}{\text{CO}_{2}\text{Me}}$   $\frac{H}{\text{CO}_{2}\text{Me}}$ 

on the basis of dipole-dipole and nonbonded steric interactions. Although the same isomer can arise from conformer **57** (which is predicted by the Felkin-Anh analysis), loss of selectivity in polar solvents may agree with the dominance of dipole-dipole effects. Reaction of complex **5** with the di-*tert*-butylsilylene derivative **53b** [R = Si(Bu-t)₂], wherein the silyl ether increases the dipole effect, increases the product ratio to 7.5:1.

Cycloaddition of Z-enoate **58** with TMM–Pd complex **5** under identical conditions gives a single cycloadduct **59** (>50:1) in 69% yield (Eq. 49). (77) Since the conformer **61** from the Felkin-Anh analysis is disfavored because of A (1, 2) strain, this extremely high facial selectivity is in best accord with conformer **60** as the reactive species.

$$OO_{OO_{2}Me}$$
 $OO_{OO_{2}Me}$ 
 $OO_{$ 

# 2.5. Cycloadditions of Stable TMM-Metal Complexes

Although various  $\eta$  (4)-TMM-metal complexes have been synthesized, they are usually too stable to react with external 2  $\pi$  acceptors. (20) The TMM

complex Fe[ $\eta^4$ -(TMM)(CO)₃] (**62**), which is prepared by the reaction of Fe₂(CO)₉ with 3-chloro-2-chloromethyl-1-butene or the parent MCP **34**, is stable and does not react with alkenes by itself. However, oxidation of complex **62** in the presence of tetracyanoethylene gives the [3 + 2] cycloadduct, albeit in very low yield (Eq. 50). (78)

The cycloaddition of TMM–Fe complex 63 in the presence of a large excess of diethyl fumarate affords two fused cycloadducts 65 and 66 and a bridged adduct 67 (Eq. 51). (79) The similarity of the product distribution with that of the thermal cycloaddition of the diazene 11 suggests that the iron complex liberates free 1,3-diyl type TMM 64, which undergoes cycloaddition to electron-deficient alkenes.

Fe(CO)₃ 
$$Me_3NO$$
  $Co_2Et$   $CO_2ET$ 

Fischer chromium carbene complex **68** reacts with phenylallene with loss of carbon monoxide to form a mixture of diastereomeric  $\eta^4$ -TMM–Cr complexes **69a** and **69b**, which react with a second molecule of phenylallene to give the five-membered ring product **70** (Eq. 52). (80)

$$(CO)_{5}Cr \xrightarrow{OEt} + Ph \qquad CCO)_{4}Cr \xrightarrow{OEt} Ph \qquad Ph \qquad (52)$$

$$Ph \xrightarrow{OEt} Ph \qquad Ph \qquad OEt \qquad Ph \qquad OEt \qquad Ph \qquad OEt \qquad (-)$$

$$Cr(CO)_{4} \qquad 69a \qquad 69b \qquad Ph \qquad Cr(CO)_{4}$$

Although zwitterionic  $\eta$  ³-TMM complexes are believed to be generated in metal-catalyzed reactions, only a single example is known for the reaction of an isolable  $\eta$  ³-TMM-metal complex. Stable zwitterionic  $\eta$  ³-TMM-Pd complex **72** is synthesized by the nucleophilic addition of stable carbanions, such as the sodium salt of dimethyl malonate, to the metal allenyl complex **71** (Eq. 53). (81) Complex **72** is readily coupled with an electron-deficient acceptor such as tetracyanoethylene or

maleic anhydride to form cyclopentane cycloadducts. These particular reactions are not catalytic processes because these alkenes are good  $\pi$ 

acceptors and react with the generated Pd(0) species upon cycloaddition before forming the TMM intermediate.

# 3. Scope and Limitations

# 3.1. Free Trimethylenemethanes from Diazenes

# 3.1.1. Availability of TMM Precursors

The availability of TMM precursors is the key requirement for synthetic applications. Diazenes are usually synthesized in four steps from fulvenes and diazo compounds. For example, diazene 6 is prepared by the Diels-Alder reaction of 6,6-dimethylfulvene and bis(2,2,2-trichloroethyl) azodicarboxylate followed by selective alkene hydrogenation, reductive decarboxylation, and oxidation as shown in Eq. 54. (82)

Since fulvenes are easily prepared from cyclopentadiene and carbonyl compounds, diazenes for intramolecular reactions are easily synthesized in the same manner. For example, base-promoted condensation of cyclopentadiene with aldehyde **73** gives fulvene **74** which is transformed to diazene **75** (Eq. 55). (83)

OHC 
$$CO_2Me$$
  $Et_2NH$   $74 (91\%)$   $CO_2Me$   $CO_2Me$ 

# 3.1.2. Intermolecular Applications

# 3.1.2.1. Cycloaddition to Alkenes

A high concentration of alkene acceptor is necessary to favor cycloaddition over dimerization of the TMM **2**. High yields of adducts with the fused and bridged structures **8** and **9** respectively, are formed with 1,3-dienes, aryl-substituted alkenes (styrene, stilbene), and  $\alpha$ ,  $\beta$ -unsaturated esters, nitriles, or anhydrides (Eq. 7), whereas unactivated alkenes do not form adducts. Singlet TMM **2** is nucleophilic in nature, and its reactivity toward alkenes roughly parallels the Diels-Alder dienophilic reactivity. (35, 36)

Although the intermolecular cycloaddition with alkenes provides a direct and simple route to linearly fused cyclopentanoid products, the major drawback of the reaction is low stereoselectivity and regioselectivity. For example, cycloaddition of diazene 6 with 2-cyclopentenone provides tricyclopentanoid products in a single step, but the reaction results in the formation of three regioisomers with low selectivity (Eq. 56). (84) As discussed later, intramolecular reactions solve many of the problems inherent in the intermolecular reactions,.

# 3.1.2.2. Cycloaddition to Alkynes and Allenes

Alkynes are poor acceptors for the parent TMM, and only highly activated alkynes are reactive acceptors. Polymeric products are usually obtained, and it is suggested that this side reaction might be caused by the reaction of the alkyne with the diazene prior to nitrogen extrusion. Useful yields (76%) of fused cycloadducts can be achieved only when the concentrations of the diazene and TMM are maintained at a very low level through the use of syringe pump techniques with a large excess of dimethyl acetylenedicarboxylate (Eq. 57). (85)

+ MeO₂C — CO₂Me 
$$\frac{\text{syringe pump}}{\text{addition}}$$
 + CO₂Me  $\frac{\text{co}_2\text{Me}}{\text{CO}_2\text{Me}}$  (57)

Electron-deficient allenes are good acceptors, and the reaction of the diazene with an allene diester takes place in a highly stereo- and regioselective manner to give the linearly fused cycloadduct as the sole product (Eq. 58). (86) The concentration of the

reactants markedly affects the results. Decreases in the concentrations of both allene and diazene cause a dramatic increase in the yield of the desired cycloadduct as well as a substantial decrease in oligomer formation. The best result is obtained when a ca. 2.5 mM solution of the diazene is added slowly over 4.5 hours to a 51 mM solution of the allene in refluxing hexanes.

# 3.1.2.3. Cycloaddition to Carbon-Heteroatom Double Bonds Various C = X hetero double bonds (X = O, N, and S) serve as TMM acceptors. Several points are worth noting. First, fused cycloadducts are formed to a larger extent than bridged adducts in all known cases. Second, in many instances, dimerization of the TMM occurs despite the use of syringe pump techniques and the use of a large excess of acceptor. Third, among acceptors tested, thiobenzophenone (X = S, R = Ph) proves to be the most reactive (Eq. 59). (85)

Although nitroso compounds are routinely used as spin-trapping reagents to scavenge transient radicals by forming more persistent radical species, they do undergo cycloaddition with TMM diradicals. Thus, thermolysis or photolysis of the diphenyl-substituted diazene 76 with nitrosobenzene gives the fused adduct 79 as the sole product (Eq. 60). (87) The reaction is believed to proceed in a stepwise manner through initial addition of the diphenyl TMM 77 to nitrosobenzene followed by intramolecular radical coupling of the intermediate diradical 78. In thermal reactions, the formation of dimeric products derived from the triplet diradical is completely suppressed.

Molecular oxygen is an excellent triplet radical scavenger, and is also used as a chemical quencher of the triplet state of TMMs such as 2. Thermolysis and photolysis of diazene 6 or 76 under medium pressure of molecular oxygen (80–150 psi;) completely suppresses the formation of the dimers of TMMs, and gives, instead, fused peroxide 80 in moderate yield (Eq. 61). (88)

# 3.1.3. Intramolecular Applications

Intramolecular processes are superior to intermolecular ones for the following reasons: (1) Excess diylophile is not required and fewer side products are formed, (2) intramolecular trapping is much more regioselective, (3) intermolecular trapping leads to a mixture of stereoisomers whereas intramolecular trapping is highly stereoselective, and (4) the configuration of the acceptor double bond is preserved in the product of intramolecular trapping, which is often not the case in intermolecular processes because of triplet participation.

# 3.1.3.1. Regiochemistry

The regiochemical course of the intramolecular reaction is influenced by the location and electronic properties of the substituents appended to the double bond, as in diazene **81** (Eq. 62). (10-13) This influence can be explained by the facts that cycloaddition must compete with intersystem crossing from the singlet TMM to the more stable triplet, and that reactivity depends on the spin state of the TMM. When the tether length between the TMM and alkene is three in intermediate **82** (n = 3), the presence of an electron-withdrawing group at either the internal or terminal carbon leads to linearly fused cycloadducts **83** through the initial singlet TMM. On the other hand, the presence of an alkyl group on the internal carbon ( $R^1$  = alkyl) shifts the pathway from singlet to triplet state, the latter leading predominantly to the formation of bridged cycloadducts **84**. As the alkyl group increases in size, the triplet contribution becomes more substantial, and a greater proportion of bridged products is observed.

# 3.1.3.2. Effects of Double Bond Substituents

Thermolysis of diazene **75**, with a three-carbon tether, in refluxing MeCN results in the formation of a 9:1 mixture of linearly fused tricyclopentanoids **85** (Eq. 63). (89, 90), The relative configurations of the ring fusions in the major isomer are cis, anti, and those of the minor isomer are cis, syn. The trans configuration of the diazene **75** is completely translated into the trans configuration of the product. The ring-fusion stereoselectivity is attributed to the lower energy of the extended pseudochair transition structure **86** leading to the cis, anti product in comparison with that of the folded pseudochair **87** leading to cis, syn product.

$$\alpha:\beta=1:9$$

$$CO_{2}Me$$

$$H$$

$$N$$

$$MeCN, reflux, 6 h$$

$$H$$

$$(85\%)$$

$$(63)$$

$$85$$

It is notable that the reaction of diazene **88** containing a *Z*-substituted double bond proceeds in a highly stereoselective manner, and the configuration is preserved in the product **89** (Eq. 64). (91) Since molecular oxygen (a triplet

scavenger) has no effect on the product distribution, the main pathway of the cycloaddition must be a concerted process involving the singlet TMM.

Although unactivated alkenes do not participate in intermolecular cycloadditions because of the preferential dimerization of the TMMs, intramolecular cycloadditions can occur. Thus, the thermolysis of diazene 90 in THF gives the tricyclopentanoid 91 in 76% yield (Eq. 65). (92) The products consist of a 1:5 mixture of  $\alpha$  and  $\beta$  products. ESR experiments suggest that both the singlet and triplet TMMs give the same adduct.

$$\alpha:\beta = 1:5$$

$$H \qquad H \qquad (76\%) \qquad (65)$$

$$90 \qquad 91$$

When a substituent R is attached to the internal carbon of the alkene 92, synthetically useful quantities of either linearly fused or bridged cycloadducts 93 and 94, respectively, can be obtained by proper choice of the R group (Eq. 66)). (93) When an electron-withdrawing group is attached to the alkene (R = COMe), the singlet TMM leads selectively to the linear cycloadduct 93. On the other hand, the presence of a large alkyl group attached to the alkene [R = CMe(OMe)₂] affords the bridged cycloadduct 94 selectively via the triplet state.

# 3.1.3.3. Effects of Tether Length

When a methylene tether (n = 1) separates the TMM and the alkene as in diazene 95, linearly fused adduct 96 is selectively formed (Eq. 67)). (12)

$$CO_2Me$$
 $THF$ 
 $reflux$ 
 $H$ 
 $(86\%)$ 
 $(67)$ 

When n = 2, the chemistry of the triplet state dominates even when the terminal carbon bears an electron-withdrawing group (Eq. 68). (94) When substrate **97** is used,

$$\frac{\text{CO}_2\text{Me}}{\text{N}'}$$
  $\frac{\text{THF}}{\text{reflux}}$   $\frac{\text{MeO}_2\text{C}}{98}$   $\frac{\text{MeO}_2\text{C}}{99}$  (68)

tricyclic adduct 100 and bicyclic adduct 101 are mainly formed; the linearly fused tricyclic product is not obtained at all. It is also noteworthy that the configuration of the alkene is lost in product 100. These results suggest that the formation of product 100 is a stepwise reaction initiated by the kinetically

favored formation of a six-membered ring to give diradical **99** (via **98**), rather than that of a four-membered ring, followed by diradical coupling with concomitant bond rotation. Bicyclic adduct **101** is formed through hydrogen atom abstraction of the common intermediate.

When an electron-withdrawing group is attached to the internal carbon, such as in diazene 102, 7-endo-trig cyclization is observed to form the linearly fused product 103 together with the uncyclized triene 104 (Eq. 69). (95) Quenching studies with dioxygen reveal that product 104 is derived exclusively from the triplet TMM and product 103 is derived from both the triplet and the singlet states.

When the tether contains four atoms, a fused cycloadduct is obtained selectively when an electron-withdrawing group is attached to the alkene. The highly functionalized and enantiomerically pure substrate **105** takes part in the intramolecular reaction to afford the fused tricyclic adduct **106** with high stereoselectivity (Eq. 70). (96)

# 3.1.3.4. Asymmetric Induction

High levels of asymmetric induction have been observed through placement of a stereogenic center on the carbon chain that links the alkene to the TMM. Thermolysis of diastereomeric diazenes 107 and 108 in refluxing MeCN mainly provides the cis, anti products 110 and 111 in 80–91% yield as a 12:1 mixture (Eq. 71). (97) The complete lack of stereospecificity with respect to the diazene configuration supports the notion that the reaction proceeds through a common TMM intermediate 109.

The reaction can be initiated by photochemical generation of the TMM at low temperature and this can lead to enhanced selectivity. Since the thermal and the photochemical processes give identical results at the same temperature, the same intermediate must be formed regardless of its mode of generation. Photolysis of substrate 107 at 7° in MeCN increases the diastereomeric ratio to 26:1, and the ratio increases to 49:1 in the reaction conducted at –30°.

As a result of the radical nature of this TMM species, the reactions tolerate free hydroxyl groups. When diazene **112** is heated in refluxing MeCN, five products, one major and four minor isomers, are produced with the ratio of the major isomer **113** 

to the sum of the minor isomers 114 being 4:1 (Eq. 72). (98, 99) The ratio of 113 to 114 is insensitive to the solvent used (THF, MeOH, MeCN) at any

temperature. However, MeOH is very useful for low-temperature reactions, and photoinduced nitrogen extrusion in MeOH at -60° leads to an increase in stereoselectivity such that the ratio of **113** to **114** reaches 30:1.

No examples of useful asymmetric induction with chiral auxiliaries have been reported. When the diazenes bearing menthyl or 8-phenylmenthyl esters are used, only low levels of diastereoselectivity are observed. (100)

# 3.1.3.5. Effects of Substituents Adjacent to the TMM

When TMMs are conjugated to an alkene or a carbonyl group, intramolecular rearrangement predominates with the formation of a cyclopentene or a dihydrofuran. For example, diazene 115 is converted to the corresponding furan 118 even in the presence of an internal double bond (Eq. 73). (101) The initially formed dihydrofuran 117 (from intramolecular rearrangement of TMM 116) is converted into furan 118 during chromatography on silica gel.

$$\begin{array}{c|c}
\hline
 & THF \\
\hline
 & reflux
\end{array}$$

$$\begin{array}{c|c}
\hline
 & 116 \\
\hline
 & 117
\end{array}$$

$$\begin{array}{c|c}
\hline
 & 118
\end{array}$$

$$\begin{array}{c|c}
\hline
 & 70\%
\end{array}$$

Cyclopropylcarbinyl radicals undergo rapid ring opening to the corresponding

homoallylic radicals. (102-104) Ring-opening reactions also occur in diyl-type TMMs. Thus, diazene **119**, possessing an  $\alpha$  -cyclopropyl group, does not give [3 + 2] cycloadducts but rather eight- and six-membered ring products **120** and **121**, respectively (Eq. 74). These compounds are formed from TMM **122**, which suffers subsequent cyclopropyl ring opening to form **123i** and **123ii**. Radical coupling forms either eight- or six-membered rings from **123i** and **123ii**, respectively. (105)

$$CO_2Me$$
  $CO_2Me$   $CO_2Me$ 

## 4. Dipolar Trimethylenemethane 5 from

## Methylenecyclopropanes

#### 4.1.1. Availability of TMM Precursors

Dialkoxy MCP 12 and its derivatives are readily available on a large scale in two or three steps from 1,3-dichloroacetone. In one approach (Eq. 75), (16, 50) 1,3-dichloroacetone is first converted to the corresponding neopentyl glycol acetal. The acetal is treated with 3 equivalents of sodium amide, which effects cyclization and in situ deprotonation of the resulting cyclopropenone acetal to generate a 2-sodiocylopropenone acetal. Treatment of the latter with an alkyl iodide gives methyl and ethyl cyclopropenone acetals 124 in about 80% overall yield. Base-catalyzed isomerization of the alkylated cyclopropene to the less strained alkylidenecyclopropane completes the synthesis of the target molecule 12 and its derivatives.

In another approach (Eq. 76), a purified unsubstituted cyclopropenone acetal 125 (106) is deprotonated with BuLi in the presence of HMPA, and the lithio derivative is alkylated with an alkyl halide. The sterically demanding MCPs such as 29 can be prepared only by this method. The merits of neopentyl glycol include its simple NMR signal pattern, the low cost of the diol, and the moderate temperature required for TMM formation. The acetals of 1,3-propanediol and 2,4-pentanediol can also be utilized as the TMM precursors, which are more rapidly converted into the TMMs than the neopentyl glycol analogs.

## 4.1.2. Intermolecular Applications

#### 4.1.2.1. Cycloaddition to Alkenes

Since the dipolar TMM 3 derived from precursor 12 is nucleophilic, a wide variety of electron-deficient alkenes bearing ketone, ester, nitrile, and nitro functionalities take part in the cycloaddition, whereas unactivated olefins, such as norbornene, and electron-rich olefins, such as enol silyl ethers, are totally inert. The reaction proceeds cleanly not only with acyclic olefins but also with cyclic ones, and provides an efficient strategy for the construction of cis-fused bicyclo[3.n.0] systems (Eq. 77). (16) Such high nucleophilicity distinguishes the dipolar TMMs from the parent TMMs, which are usually generated by the diazene route.

The cycloaddition is only marginally subject to solvent effects. This reaction does not necessarily require the use of solvent and tolerates various aprotic solvents (hydrocarbon, haloalkane, nitrile, DMSO). The solvent polarity does not affect the regioselectivity for the formation of the ketene acetal 13 and the exomethylene product 14 (Eq. 14). An alkylnitrile solvent is used routinely since TMM generation takes place faster in a polar solvent. The reaction does not necessarily require rigorous exclusion of moisture or air because the

cycloaddition of the dipolar TMMs, such as **3**, to olefins is faster than its reaction with triplet molecular oxygen because of the singlet nature of the dipolar TMM.

The thioacetal derivative 126, on the other hand, reacts with both electron-deficient and electron-rich alkenes under thermal or photochemical activation (Eq. 78). (107) The reaction usually gives a mixture of the ketene acetal product, such as 129, and the exomethylene product, such as 130, but a single isomer can be obtained by the proper choice of the alkene substrates. The reaction proceeds by a single-electron transfer from MCP 126 to electron acceptors, such as tetracyano-ethylene or photo-excited 9,10-dicyanoanthracene (DCA), to generate radical cation 127. Subsequent ring opening generates TMM radical cation 128, which undergoes cycloaddition with alkenes.

### 4.1.2.2. Effects of High Pressure

In line with well-known effects of pressure upon cycloadditions, (108) significant rate acceleration under high pressure is observed. For instance, a relatively slow reaction of a 3-methyl-2-butenolide with MCP 12 affords a bridgehead-substituted adduct in 84% yield after being heated for 90 hours at  $80^{\circ}$  (Eq. 79). (16) The same cycloaddition results in an 87% yield after heating to  $70^{\circ}$  under 13 kbar for 16 hours. The results also suggest that the rate-limiting step is not TMM generation but C —C bond formation.

## 4.1.2.3. Cycloaddition to Dienes

Regio- and periselective reactions take place with acyclic dienes. The reaction of MCP 12 with methyl sorbate occurs selectively at the 2,3-double bond to give a five-membered ring (Eq. 80). (34)

#### 4.1.2.4. Cycloaddition to Alkynes

Unlike the parent TMM, the dipolar TMMs undergo cycloaddition to electron-deficient alkynes in good yields. However, alkynes are indeed less reactive toward TMM 3 than the structurally related alkenyl substrates.

The reaction of precursor 12 with methyl 2-hexynoate in toluene requires 100° (Eq. 81), (109) whereas methyl (*E*)-2-hexenoate reacts at 80°. The cycloaddition proceeds efficiently to afford the cyclopentene 131, which is isolated as the dicarboxylic ester 133 after acid hydrolysis. A small amount of the exomethylene isomer 132 is also formed, suggesting the intervention of a single electron transfer cycloaddition pathway. The reaction rate also increases as the polarity of the solvent increases, but the ratio of 131:132 is not subject to solvent effects.

$$n-Bu = CO_2Me$$
 $n-Bu = CO_2Me$ 
 $n-Bu = CO_2Me$ 

A variety of alkynes bearing electron-withdrawing groups, such as esters, sulfoxides, and sulfones, undergo cycloaddition with substrate 12. In consonance with the nucleophilic nature of TMM 3, the reaction rate increases as the electron demand of the alkyne increases. A synthetic drawback is the failure of unactivated alkynes to act as 2  $\pi$  acceptors. For instance, phenylacetylene and hexyne are inert. Sulfur-substituted alkynes can serve as synthetic surrogates of simple alkynes. Alkynic sulfones and sulfoxides are very reactive TMM acceptors. After the cycloaddition, vinyl sulfone cycloadduct 134 is readily desulfurized under mild conditions to afford cyclopentene 135 (Eq. 82). (109)

Cycloaddition to alkynyl ketones shows an interesting dichotomy. In the reaction of substrate 12 with ketone 136a in toluene, the cycloaddition reaction takes place exclusively on the carbonyl group to give the exomethylene product 137a (Eq. 83). (109) Only when the carbonyl group is deactivated electronically and sterically as in ketone 136b, and the reaction is performed in toluene, does the cycloaddition take place on the alkyne to give the ketene acetal 138b. The selectivity toward 138b, however, erodes in a polar solvent (MeCN), and significant amounts of the exomethylene product 137b are also formed. This solvent effect suggests that the cycloaddition on the carbonyl group takes place through a polar stepwise reaction pathway, which becomes faster than the concerted-like alkyne cycloaddition reaction in a polar solvent.

12 toluene 
$$R = Ph$$
  $SiMe_3$   $R = i-Pr$   $SiMe_3$   $R = i-Pr$   $SiMe_3$   $SiMe$ 

## 4.1.2.5. Cycloaddition to Carbonyl Compounds

Because of the dipolar and nucleophilic character of TMM 3, carbonyl compounds also serve as good 2  $\pi$  acceptors. This reactivity is in sharp contrast to the diyl type TMM 2, which is rather unreactive toward polarized double bonds. Both aromatic and aliphatic aldehydes and ketones react with substrate 12 to give mainly exomethylene products 139 together with a small amount of ketene acetals adducts 140 (Eq. 84). (110)

$$R^{1}$$
 $R^{2}$ 
heat
 $R^{2}$ 
heat
 $R^{1}$ 
 $R^{2}$ 
 $R^{2}$ 

The cycloaddition reactions of the dipolar TMMs are often virtually free of side reactions, and good to excellent yields of cycloadducts are obtained by using stoichiometric amounts of reactants. Because of the inherent polarity of TMM 3, the regioisomeric exomethylene product 141 is not formed. The reaction rate decreases as the solvent polarity decreases, and the isomer ratio 139:140 increases when a nonpolar solvent is used. The cycloaddition in a nonpolar solvent, such as cyclohexane or benzene, gives about a 24:1–48:1 mixture of 139 and 140 for aliphatic aldehydes and ketones. With some aromatic

aldehydes, the ratio is lower (6.6:1), yet still remains at a synthetically acceptable level.

#### 4.1.2.6. Effects of High Pressure

As in cycloadditions to olefins, use of high pressure is particularly advantageous for cycloadditions with aliphatic ketones. The reaction of precursor 12 with 4-*tert*-butylcyclohexanone is complete at 80° under 13–14 kbar of pressure, whereas reaction under 1 bar requires 100–130° (Eq. 85). (110) The process takes place selectively from the electronically favored axial direction, and the stereoselectivity (4:1) remains unchanged under high pressure conditions.

O Bu-t 
$$O$$
 trans:  $cis = 4:1$ 
 $C_6D_6$ ,  $130^\circ$ ,  $59 \text{ h: } (73\%)$ 
 $ext{neat}$ ,  $100^\circ$ ,  $62 \text{ h: } (81\%)$ 
 $ext{CH}_2Cl_2$ ,  $80^\circ$ ,  $13 \text{ kbar}$ ,  $50 \text{ h: } (74\%)$ 

## 4.1.2.7. Chemoselectivity

Although the cycloaddition of  $\alpha$ ,  $\beta$ -unsaturated ketones takes place highly regioselectively on the C  $\,$  –C double bond, the cycloaddition of  $\alpha$ ,  $\beta$ -unsaturated aldehydes gives a mixture from competing cycloadditions to the carbonyl and the alkenyl groups. Even in the cycloaddition with

3-methyl-2-butenal whose double bond is sterically encumbered, the two reaction paths compete (Eq. 86). (110)

Owing to the low reactivity of alkynes toward TMMs, cycloadditions with  $\alpha$ ,  $\beta$ -unsaturated alkynyl ketones occur selectively on the ketone group (Eq. 83). Thus, the regioselective cycloaddition to the carbonyl moiety of alkynyl aldehydes or ketones followed by partial hydrogenation of the alkyne moiety to the corresponding alkene provides a useful method for the preparation of the formal carbonyl addition products of  $\alpha$ ,  $\beta$ -unsaturated aldehydes or ketones.

#### 4.1.2.8. Regioselectivity

The reaction of the ethylidene compound 21 with benzaldehyde gives predominantly ethylidenelactone acetal 142 together with methylenelactone 143 (Eq. 87). (110) The observed selectivity is rationalized on the basis of steric effects in the asynchronous bond formation. The initial bond formation occurs at the allylic moiety of TMM at the less hindered methylene carbon rather than at the substituted one.

PhCHO + 
$$OOO$$
  $C_6H_6$   $OOO$  +  $OOO$  (87)

### 4.1.2.9. Cycloaddition to C = N Double Bonds

O-Alkyloximes are good acceptors for dipolar TMMs, and cycloaddition with substrate 12 selectively affords ketene acetal product 144, which can be hydrolyzed by acid to give ester 145 (Eq. 88). (50)

$$R^{2}$$
 $R^{2}$ 
 $R^{2$ 

O-Alkyloximes derived from aromatic and heteroaromatic aldehydes give cycloadducts in good to excellent yield by the use of a near equimolar mixture of substrate 12 and the oxime. Oximes derived from aliphatic aldehydes are much less reactive. O-Methoximes and O-benzyloximes can be used with equal success. The configuration of the oximes significantly influences the rate of the reaction, and the anti isomer reacts 67 times faster than the syn isomer in the case of the O-methoxime of 2-furaldehyde in CD₃CN. This marked rate difference provides strong evidence for the concerted character of the cycloaddition. In this respect, O-benzyloximes are superior to O-methoximes, because the former are generally obtained with higher anti selectivity (9:1) than the latter (2.5:1) by the reaction of an aldehyde and the corresponding alkoxyamine.

The reaction rate is strongly affected by the electronic nature of the R² group in the oxime. Among various 4-substituted benzaldehyde *O*-alkyloximes, those bearing an electron-withdrawing group, such as chlorine, react at 100°, whereas benzaldehyde oxime requires higher temperatures (120–130°). The cycloaddition proceeds faster under high pressure, and oximes bearing an electron-donating group, such as a methoxy group, only react under high pressure (10 kbar). On the other hand, the reaction with methyl glyoxylate

O-benzyloxime occurs within 1.5 hours at 80°, providing a new route to proline derivatives (Eq. 89). (50)

Cycloaddition reactions with more electron-deficient C=N double bonds, such as those in N-tosyl and N-acylimines, proceed much faster than those with oximes. The reaction of substrate 12 with benzaldehyde N-tosylimine affords exclusively the acetal of  $\alpha$  -methylenepyrrolidone 146 instead of the ketene acetal of pyrrolidinone (Eq. 90). (111) Product 146 is sensitive to acid, and is isolated as the corresponding  $\alpha$  -alkylidene-  $\gamma$  -amino ester 147.

Tosylimines from aromatic, vinylic, and aliphatic aldehydes and ketones serve as good acceptors, and in all reactions, acetals of  $\alpha$  -methylenepyrrolidones are formed. However, the reaction fails with tosylimines having enolizable  $\alpha$  -hydrogens, and deprotonation of the acidic hydrogen by the dipolar TMM takes place selectively. (111)

NTs 
$$12$$
 OOO OH  $146$  Ph  $147$  OOO (92%) (90)

N-Acylimines take part in the cycloaddition, and also give the acetals of  $\alpha$  -methylenepyrrolidone. The reaction of substrate 12 with benzaldehyde methoxycarbonylimine at 80° affords mainly adduct 148, together with a small amount of the ketene acetal adduct of the pyrrolidine (Eq. 91). (111)

## 4.1.2.10. Chemoselectivity

The cycloaddition of substrate 12 with imines of  $\alpha$ ,  $\beta$  -unsaturated aldehydes occurs preferentially at the imine moiety, but the selectivity is not complete. The reaction of substrate 12 with the tosylimine of cinnamaldehyde gives mainly pyrrolidine cycloadduct 149 (Eq. 92). (111) The carbon-carbon double bond also takes part in the reaction to afford the methylenecyclopentane 150, and the ratio 149:150 is 6.8:1. This side reaction cannot be suppressed even with the 3-methyl-2-butenal imine, whose double bond is deactivated sterically and electronically, and a mixture of the pyrrolidine and cyclopentane cycloadducts is obtained as a 5.1:1 mixture.

#### 4.1.2.11. Regio- and Stereoselectivity

Steric effects of the substituents both on the TMM ( $R^1$ ) and on the oxime ester ( $R^2$ ) influence the regio- and stereoselectivity in the reactions of substituted TMMs (Eq. 93). (50) Thus, a combination of sterically unhindered reactants ( $R^1 = R^2 = Me$ ) affords a 2.3:1 mixture of regioisomers 152 and 153, both of which are 1:1 mixtures of diastereomers from the disposition of the  $R^1$  and  $CO_2R^2$  groups. When the *tert*-butyl ester of the oxime is employed, the regioselectivity (152:153) improves slightly to 4.6:1. The use of an isopropyl

group as the TMM substituent  $R^1$  also improves the regioselectivity. The reaction between a sterically hindered TMM and an *O*-alkyloxime ( $R^1 = i$ -Pr and  $R^2 = t$ -Bu) takes place with high selectivity, producing a 9:1 mixture of **152:153**, wherein isomer **152** is >97% pure cis and isomer **153** is >96% trans. Hydrolysis of the ketene acetals **152** and **153** with acid takes place highly diastereoselectively to give the trisubstituted pyrrolidines **154** and **155** both as single isomers in 79% and 10% isolated yields, respectively.

Stereoselective cycloaddition of the isopropyl-substituted MCP 29 with anti-oximes takes place mainly via a regio- and stereodefined, five-centered transition structure schematically represented as 156 rather than 157. In these transition states, the oxime ester substrate bearing a bulky R group is oriented so that it avoids interaction with the isopropyl group. The regio- and stereochemical course of the reaction is controlled by the steric bulk of the benzyloxy group and the ester groups, and neither the benzyloxy nor the ester group acts as an electronic stereochemistry-directing group. This behavior is in sharp contrast to the solvent polarity sensitive endo selectivity in the addition of the same TMM 29 to substituted acrylic acid esters. The sensitivity of the selectivities to the steric bulk of the benzyloxy group and the R¹ and R² groups is consistent with a highly ordered transition state, wherein formation of the two new s bonds takes place concurrently.

In the cycloaddition of tosylimines with a substituted TMM, two structural isomers, **158** and **159**, can be formed, and steric effects of the substituent on the TMM determine the selectivity (Eq. 94). (111) The cycloaddition of sterically unhindered TMM precursor **21E** with benzaldehyde tosylimine gives a 1.7:1 mixture, whereas the sterically demanding MCP derivative **151** affords the cycloadduct as a single isomer. The alkylidene group in product **158** is exclusively in an *E* geometry, reflecting the geometry of the TMM species.

NTS Ph Ph R Ph (94)

21E: R = Me
151: R = t-Bu

MCP R 158:159 yield
21E Me 1.7:1 (98%)
151 
$$t$$
-Bu 1:0 (35%)

## 4.1.3. Intramolecular Applications

Intramolecular cycloaddition of dipolar TMMs provides a method for the synthesis of bicyclo[4.3.0] and [3.3.0] carbo- and heterocycles. MCP **160a** and **160b**, whose carbon-carbon double bonds are activated by single electron-withdrawing groups, selectively and stereospecifically give ketene acetal adduct **161** with high efficiency (Eq. 95). (112, 113), Product **161a** derives from an endo transition state as in the intermolecular reaction, but **161b** derives from an exotransition state because conformational constraints in the transition state override the endo rule. Reaction of MCP **160c**, which possesses a carbon-carbon double bond highly activated by geminal

electron-withdrawing groups, gives a mixture of products **161c** and **162c** by way of the single electron transfer pathway.

# 4.2. Transition Metal Catalyzed Reactions of Methylenecyclopropanes *4.2.1. Availability of TMM Precursors*

The parent MCP, **34**, is prepared on a large scale in a one-pot, two-step procedure from methallyl chloride by base-promoted cyclization to form methylcyclopropene followed by base-promoted isomerization (Eq. 96). (114) However, extension of this method to substituted MCPs is limited.

Alternatively, substituted MCPs are prepared by various methods, including dehydrochlorination of chloro-substituted cyclopropanes (Eq. 97), (115) carbene or metal carbenoid addition to allenes (Eq. 98), (116-118) Wittig reaction of cyclopropylidene-triphenylphosphorane derivatives with carbonyl compounds (Eq. 99), (119) Peterson olefination of silyl-substituted cyclopropanes (Eq. 100), (120, 121) and nucleophilic addition of lithiated MCPs (Eq. 101). (122) The methods shown in Eqs. 97, 98, and 101 are particularly useful for the preparation of ring-substituted derivatives, and those

in Eqs. 99 and 100 are useful for the olefin-substituted derivatives. The synthesis of MCPs has been reviewed recently. (123)

$$Ph_3P \longrightarrow O \longrightarrow OTBDMS \longrightarrow OTBDMS$$
 (99%)

$$\begin{array}{c|c}
\text{Br} & \text{SiMe}_3 \\
\hline
 & 1. \text{ BuLi} \\
\hline
 & 2. \text{ PhCHO}
\end{array}$$

$$\begin{array}{c|c}
\text{OH} \\
\text{Ph} & \text{SiMe}_3
\end{array}$$

$$\begin{array}{c|c}
\text{KH} \\
\hline
 & (55\%) \\
\end{array}$$
(100)

## 4.2.2. Intermolecular Applications

## 4.2.2.1. Cycloaddition to Alkenes

Transition metal mediated cycloadditions of MCPs are generally insensitive to the electronic nature of the acceptors, and unactivated alkenes, such as ethylene and cyclopentene, conjugated alkenes, such as styrene, and electron-deficient alkenes react equally well with MCP using Ni or Pd catalysts. However, dimerization of MCPs sometimes competes with cycloaddition with unactivated alkenes, and the use of excess alkene is required in such cases (Eq. 102). (22, 124) Enones of medium ring sizes, which are poor acceptors in nucleophilic additions, also serve as good TMM acceptors (Eq. 103). (125)

$$\frac{1}{34}$$
 +  $\frac{Pd(acac)_2/Et_2Al(OEt)/i-Pr_3P}{benzene, 100^\circ, 1 h}$  +  $\frac{Pd(acac)_2/Et_2Al(OEt)/i-Pr_3P}{(102)}$  (102)

Ph 
$$\rightarrow$$
 Ph  $\rightarrow$  P

A variety of substituents on both the cyclopropane ring and the alkenes are tolerated, and alkyl- (Eq. 104), (126)aryl- (Eq. 105), (127) vinyl- (Eq. 106), (128) and silyl-substituted MCPs can serve as precursors. The cyclopropyl-substituted MCP 163 selectively affords vinyl-cyclopropane product 164 in the presence of a Pd catalyst (Eq. 104). Although mono- and disubstituted MCPs serve as precursors, tetrasubstituted MCPs do not give the desired [3 + 2] cycloadducts. (129)

$$+ EtO_2C - Pd(dba)_2/(i-Pr)_2(t-Bu)P$$

$$CO_2Et - EtO_2C - CO_2Et$$

$$dba = dibenzylideneacetone - 164$$
(83%)

Ph + 
$$O = \frac{\text{Ni } (\text{cod})_2/(o-\text{PhC}_6\text{H}_4)_3\text{P}}{\text{THF, } 110^\circ, 8 \text{ h}} O = \frac{\text{Ni } (\text{82\%})}{\text{Ph}} (82\%)$$
 (105)

## 4.2.2.2. Effect of Lewis Acids

Addition of triethylborane as a cocatalyst dramatically improves both the yield and regioselectivity (distal vs. proximal bond cleavage) of the reactions. The products arise through proximal ring opening and, thus, the "memory" of the substituent on the MCP is retained in the product (Eq. 107). (130)

$$\begin{array}{c} Ph \\ \hline \\ Ni(cod)_2/Ph_3P/Et_3B \end{array} \begin{array}{c} Ph \\ \hline \\ O \end{array} (72\%) \\ \hline \\ Ni(cod)_2/Ph_3P/Et_3B \end{array} (75\%)$$

## 4.2.2.3. Cycloaddition to Dienes

Dienes, such as butadiene and substituted dienes, serve as acceptors and afford [3 + 2] cycloadducts. With substituted dienes, the reaction occurs selectively at the less substituted double bond (Eq. 108). (131)

## 4.2.2.4. Cycloaddition to Alkynes

Disubstituted alkynes, especially trimethylsilylacetylene derivatives, are good acceptors. The tris-(2-phenyl)phenyl phosphite modified Ni(0) catalyst is routinely used for this cycloaddition. As in cycloadditions with alkenes, reactions with alkynes usually show low regioselectivity with respect to the ring opening of MCPs, and isomeric mixtures of the cycloadducts are obtained. However, in some specific combinations of substituents on both the MCPs and the alkynes, high regiochemical control can be observed as shown in Eqs. 109 and 110. (132)

Ph + Me₃Si = SiMe₃ 
$$\frac{\text{Ni(cod)}_{2}}{(o-\text{PhC}_{6}\text{H}_{4}\text{O})_{3}\text{P}} = \frac{\text{Ph}}{\text{Me}_{3}\text{Si}} = \frac{(48\%)}{\text{SiMe}_{3}}$$
 (109)

Ph 
$$\rightarrow$$
 Ph  $\rightarrow$  P

#### 4.2.2.5. Asymmetric Induction

High levels of asymmetric induction can be observed using chiral auxiliaries. Although reactions of MCP 34 with menthol- and borneol-derived acrylate

esters show low diastereoselectivity, the reaction with a camphorsultam-derived amide gives cycloadduct 166 with high diastereoselectivity (Eq. 111). (133, 134) The selectivity increases with decreasing reaction temperature at the expense of longer reaction times. Dimethyl-substituted MCP 165 shows higher selectivity than analog 34, and the reaction at –10° gives a single cycloadduct. The selectivity is believed to be derived from the mode of coordination of the Ni catalyst. As shown in assembly 167, the Ni catalyst coordinates to the alkenyl moieties of MCP and the acceptor, as well as to the sulfonyl oxygen atoms of the sultam.

4.2.2.6. Cycloaddition to Carbonyl Compounds and Carbon Dioxide

The cycloaddition of MCPs with carbonyl compounds has been described only recently. Tributylphosphine oxide modified palladium(0) catalysts effect the cycloaddition of various alkylidenecyclopropanes with aromatic aldehydes (Eq. 112). (135) Although the reaction potentially gives three regioisomers, the reaction selectively affords the single isomer 168. Success of the reaction may be attributed to the high concentration of both substrates.

$$R^{1}$$
 $R^{2}$ 
 $+$ 
 $H$ 
 $Ar$ 
 $Pd(PPh_{3})_{4}/P(O)Bu_{3}$ 
 $R^{1}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^$ 

The parent MCP as well as alkyl-substituted MCPs react with carbon dioxide to give  $\gamma$ -lactone derivatives. Palladium(0) catalysts are used for this reaction. With substituted MCPs, both isomers 169 and 170 are selectively formed by proper choice of the phosphine ligand (Eq. 113). (136) Since Pd(0) catalyzes the isomerization of lactone 169 to lactone 170, formation of isomer 170 most likely involves the initial formation of the regioisomer of adduct 169 followed by the isomerization of the exomethylene to the internal and conjugated alkene.

#### 4.2.2.7. Cycloaddition to C = N Double Bonds

The cycloaddition of MCPs with imines has also been recently reported. Alkylidenecyclopropanes undergo cycloaddition with various tosylimines in the presence of a palladium(0) catalyst to give the corresponding pyrrolidines (Eq. 114). (137) The reaction shows a unique substrated ependent dichotomy: aryl-substituted imines afford the exomethylene product 171, and alkyl-substituted imines afford the alkylidene product 172.

The C=N moiety of ketene imine 173 selectively reacts with MCP 34 under Ni or Pd catalysis, and the adduct is isolated as pyrrolidine 175 by way of intermediate 174 (Eq. 115). (138) Alkyl-substituted MCPs also undergo cycloaddition at the C=N moiety, and the "memory" of the starting structure of the MCPs is lost during the cycloaddition.

## 4.2.3. Intramolecular Applications

Regiochemical control can be achieved in the intramolecular reaction, in which many of the undesirable complications can be avoided. Although palladium catalysts have a strong preference for the distal ring opening of substituted MCPs in the intermolecular reaction, the regioselectivity of the ring cleavage in the nickel-catalyzed reaction is strongly affected by the structure of the substrate.

#### 4.2.3.1. Regioselectivity

The Pd(0)-catalyzed reaction of acetylenic MCP 176 gives the substituted hydroindane 177 arising from distal cleavage of the MCP ring, whereas the Ni(0)-catalyzed reaction results in the formation of regioisomer 178 through proximal cleavage (Eq. 116). (139) This result indicates that the selection of

the metal catalyst may be used in a predictable way to govern the regiochemical outcome of certain reactions.

In the presence of Pd(0) catalysts, various acetylenic and olefinic MCPs bearing three-carbon tethers undergo cycloaddition reactions through distal ring opening of MCPs to afford bicyclo[3.3.0]octanes. For example, the olefinic MCP 179 affords cis–fused adduct 180 in the presence of Pd(0) catalysts (Eq. 117). (140, 141)

Ph Ph 
$$\frac{\text{Pd}_{2}(\text{dba})_{3}}{(i-\text{PrO})_{3}\text{P}}$$
 Ph  $\frac{\text{Ph}}{\text{H}}$  (47%) (117)

The reaction path is altered by the structure of the substrates, and both the Ni(0)-and Pd(0)-catalyzed reactions of cyclooctane derivative **181** give [3.3.3]propellane **182** as the sole product through distal cleavage of the MCP ring (Eq. 118). (142, 143) The

Ni(acac)₂/DIBAL-H/Ph₃P or PdCl₂/DIBAL-H toluene, 90-130° 
$$\frac{R}{H}$$
 (74%) CO₂Et (91-98%) (118)

reaction course may be strongly affected by transannular interaction of the MCP and alkenyl moieties, which is well known in medium-ring compounds. The cycloaddition is feasible for both electron-deficient and simple alkenes ( $R = CO_2Et, H$ ).

The Pd(0)-catalyzed intramolecular cycloaddition of each of the two diastereomers of substrate **183** gives a similar mixture of the two geometric isomers **184** and **185** in a 5:1 ratio (Eq. 119). (144) The observed "memory loss" is initially rationalized

in terms of a relatively long-lived palladium-TMM type intermediate, but a mechanism that involves direct attack of the cyclopropyl group on alkynes as in Eq. 29 can also account for the observed loss of selectivity.

The regiochemical change with respect to the substituents on the MCP is controlled in the reaction of alkylidene MCP 186, and the cycloaddition selectively affords alkylidenecyclopentene 187 as the sole product (Eq. 120). (57) This result stands in sharp contrast to the intermolecular reaction.

#### 4.2.3.2. Stereospecificity

Palladium-catalyzed intramolecular cycloadditions of the diastereomeric acetylenic MCPs 188 and 190 occur stereospecifically (>100:1) with retention of configuration, and give the diastereomeric cycloadducts 189 and 191, respectively (Eqs. 121 and 122). (57) This pattern is observed for all the diastereomeric cycloadducts, regardless of the substitution pattern.

# 4.3. Transition Metal Mediated Reactions of Silylated Allylic Acetates 4.3.1. Availability of TMM Precursors

2-Acetoxymethyl-3-allyltrimethylsilane (41) is the most common precursor of the dipolar TMM-Pd intermediate. This compound can be prepared in 60% overall yield by metalating  $\alpha$  -methylallyl alcohol with n-BuLi followed by quenching with trimethylsilyl chloride, hydrolysis of the silyl ether, and O-acetylation of the resulting alcohol (Eq. 123). (69, 145, 146)

The same compound can be also prepared from

2-(chloromethyl)-3-chloropropene or trimethylsilylethyl glycolate. Substituted derivatives can be prepared from the corresponding substituted alcohols. Alternatively, a silyl-substituted allylic acetate or 2,3-dibromopropene can be used as the starting material for substituted derivatives (Eq. 124). (75) The isomeric allylic acetates are also prepared from substituted alkylidenemalonates (Eq. 125). (74)

$$Me_3Si$$
 OH  $Me_3Si$  O  $Re_3Si$  O  $Re_3Si$  OAc  $Me_3Si$  OAc  $Me_3Si$  OAc  $Me_3Si$  OAc  $Me_3Si$  OAc  $Me_3Si$  OAc

In addition to the acetate, other ester derivatives, including carbonate, benzoate, and mesylate, have been used as TMM precursors. These precursors are prepared by methods similar to those described above. The leaving group sometimes affects the course of the reaction, and specific examples are discussed later. Allylic bromides, however, cannot be used as precursors.

## 4.3.2. Intermolecular Applications

#### 4.3.2.1. Cycloaddition to Alkenes

The zwitterionic TMM-Pd complex **5** possesses nucleophilic character, and reacts preferentially with alkenes bearing electron-withdrawing groups, such as esters, nitriles, ketones, and sulfones. Simple alkyl-substituted alkenes such as norbornene derivatives or electron-rich olefins such as enamines fail to react. Thus, cycloaddition with norbornadiene **192**, which possesses both an electron-deficient and an unfunctionalized double bond, selectively occurs at the electron-deficient double bond (Eq. **126**). (65, 69) However, highly electron-deficient alkenes, such as TCNE, do not give adducts under these

reaction conditions, presumably because electron-transfer processes, such as oxidation of the Pd catalyst, disrupt the cycloaddition.

Several Pd(0) and Pd(II) salts can be used in this catalytic system. The reaction proceeds best with a Pd(0) catalyst that bears arylphosphine ligands, normally with a ligand:Pd ratio of 4:1. The typical catalysts used are  $(Ph_3P)_4Pd$  or a Pd(OAc)₂/(i-PrO)₃P combination. When the Pd(II) catalyst is used, it is first reduced to Pd(0) with n-BuLi, DIBAL-H, or the alkene reactant. Although there are no significant differences in yields between the Pd(0) and Pd(II) catalysts, the latter does offer a unique advantage of being able to vary the nature of the ligand without preparing the corresponding Pd(0) complex and to avoid handling of air-sensitive complexes.

The solvent also plays a very important role. Changing from toluene to THF dramatically shortens the reaction time and enhances the yield of cycloaddition. In dipolar aprotic solvents such as acetonitrile or DMF, the reactions proceed even at room temperature although the yields may be somewhat lower.

The cycloaddition is sensitive to the steric bulk and the structure of the acceptor. Trisubstituted alkenes and enones of medium ring size are usually poor acceptors toward the cycloaddition. For example, the Pd-catalyzed reaction of precursor 41 and substrate 193a (R = Me) affords the desired cycloadduct 194a in only 5% yield (Eq. 127). (147) In such a situation, installation of a 2-carbomethoxy group, such as in enone 193b (R =  $CO_2Me$ ), enhances the electron-deficiency of the acceptor and increases the yield (71% yield for 194b with complete stereoselectivity).

2-Carbomethoxy-2-cycloalkenones in medium-size rings also show higher reactivities toward the TMM–Pd complex.

Vinylsulfones are good acceptors for the TMM-Pd complex and serve as masked alkenes by cycloaddition followed by reductive desulfonylation. For example, the reaction of precursor 41 with the enantiomerically enriched vinylsulfone 195 affords bicyclic product 196. Sodium amalgam reduction and deprotection affords alkene 197. The overall sequence represents the equivalent of a cycloaddition of a cyclohexene derivative (Eq. 128). (148) In addition to desulfonylation, other functional group manipulations provide access to a variety of cyclopentane derivatives. Because sulfones are good leaving groups, oxidation of the exomethylene group or alcohol function of intermediate 196 followed by base treatment provides fused enone derivatives 198 and 199.

1. TBAF
2. Na(Hg)
MeOH

RO
Pd(OAc)₂/
(i-PrO)₃

$$SO_2Ph$$
R = TBDMS
195

 $trans: cis = 9:1$ 
1. TBAF
2. Na(Hg)
MeOH

RO
H
197

RO
H
0₃, MeOH
Me₂S, Et₃N

198

1. TBAF
0
1. TBAF
0
2. (COCl)₂,
DMSO,
i-PrNEt₂
199

3. Al₂O₃

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(68-81%)

(89%)
(128)

## 4.3.2.2. Cycloaddition to Alkynes

Cycloaddition of TMM–Pd complexes with alkynes would potentially give methylenecyclopentenes, but this process has not been effective. Alternatively, alkynes are temporarily masked by the Diels-Alder reaction and regenerated after the cycloaddition by flash vacuum pyrolysis (Eq. 129). (149)

$$= CO_{2}Me$$

## 4.3.2.3. Cycloaddition to Dienes and Trienes

In the reaction of precursor **41** with dienes, [3+4] cycloaddition competes with [3+2] cycloaddition. Selective [3+2] cycloaddition takes place when a sterically bulky phenyl-substituted TMM–Pd complex is used with acyclic dienes (Eq. 130). (150) On the other hand, conformational restriction of the diene to its cisoid geometry enhances the formation of the [3+4]

cycloaddition product to afford seven-membered rings (Eq. 131). (151) Cycloaddition to tropone derivatives, being cyclic trienes, selectively gives the [3 + 6] cycloadducts. (152)

$$CO_2(CH_2)_2Ph$$

$$41$$
 $CO_2(CH_2)_2Ph$ 

$$Pd(OAc)_2/(i-PrO)_3P$$

$$n-BuLi$$

$$(88\%)$$
(131)

## 4.3.2.4. Effects of High Pressure

The regioselectivity of cycloaddition of substituted TMM-Pd complexes is pressure dependent (Eq. 132). (153) At ambient pressure, the reaction takes place from a thermodynamically more stable TMM-Pd complex, and under high pressure an initially generated TMM-Pd complex, e.g. 50 and 51 in Eq. 47, reacts preferentially. In the reaction of the isomeric methyl-substituted TMM precursors 200 and 201 with coumarin, the major product under ambient pressure is the same cycloadduct 202. High pressure inverts the regioselectivity of the cycloaddition starting from precursor 200, now favoring cycloadduct 203, whereas the isomeric TMM precursor 201 shows enhanced selectivity for isomer 202 at high pressure.

#### 4.3.2.5. Carboxylative Cycloadditions

The silyl-substituted TMM–Pd complex generated from precursor 204 can react directly to give the silyl–substituted methylenecyclopentane 205 or carboxylated methylenecyclopentane 206 depending on the nature of the leaving group (Eq. 133). (154, 155) By the use of acetate 204a, the cycloaddition with coumarin proceeds regioselectively to give product 205. The same reaction with carbonate 204b leads instead to the carboxylic acid 206 as a single diastereomer.

#### 4.3.3. Asymmetric Induction by Chiral Auxiliaries

Asymmetric induction is achieved by the use of conformationally rigid acceptors. Chiral auxiliaries of the type utilized in many Lewis acid catalyzed

Diels-Alder reactions, such as substituted oxazolidin-2-ones and camphor sultams, have not been successful with the [3 + 2]

$$R = Ac$$

$$R = Ac$$

$$R = Ac$$

$$Me_3Si$$

$$OR$$

$$204$$

$$a: R = Ac$$

$$b: R = CO_2Me$$

$$R = CO_2Me$$

cycloaddition (4–26% diastereofacial selectivity). The use of chiral sulfoxides, such as **207**, as the auxiliary increases diastereofacial selectivity to synthetically acceptable levels (75–90% diastereofacial selectivity) (Eq. 134). (156)

The lack of diastereofacial selectivity may be attributed to the conformational mobility of the acceptors in the absence of a Lewis acid. Therefore, the use of alkenes possessing conformationally rigid chiral auxiliaries, such as 208, 212, and 213, results in high diastereofacial selectivity. Pd(0)-catalyzed cycloaddition of substrate 208 with precursor 41 in THF at 70° gives a 3:1 mixture of two adducts 209 and 210 (Eq. 135). (157) Removal of the chiral auxiliary by basic hydrolysis followed by esterification gives the single product 211.

Both enantiomeric series are available either by using the enantiomeric chiral auxiliary or by changing the alkene geometry (Eqs. 136 and 137). (157) In all reactions of the Z-alkylidene acceptor, the facial selectivity with respect to the acceptor is >96%. For the E acceptor, the facial selectivity drops to 90%.

$$\begin{array}{c|c}
O & Me \\
\hline
O & N \\
\hline
O & N \\
\hline
Ph & Pd(OAc)_2/(i-PrO)_3P
\end{array}$$

$$\begin{array}{c|c}
O & Me \\
\hline
O & N \\
O & N \\
\hline
O & N \\
O & N \\
\hline
O & N \\
O & N \\
\hline
O & N \\
\hline
O & N \\
O & N \\
\hline
O & N \\
O & N \\
\hline
O & N \\
O & N \\
\hline
O & N \\
\hline
O & N \\
\hline
O & N \\
O & N \\
\hline
O & N \\
\hline
O & N \\
O & N \\
\hline
O & N \\
O & N \\
\hline
O & N \\
O & N \\
\hline
O & N \\
O & N \\$$

## 4.3.3.1. Asymmetric Induction with Chiral Catalysts

Asymmetric induction by chiral transition metal complexes has so far met with little success, probably because the bond-making process occurs on the face opposite to that complexed with palladium. (73) The most successful examples employ the chiral ferrocenylphosphine 214, which affords up to 78% enantiomeric excess (Eq. 138). (158) Other chiral phosphines, such as CHIRAPHOS [bis(diphenylphosphino)butane], BINAP [2,2¢-bis(diphenylphosphino)-1,1¢-binaphthyl], DIOP [2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane] or CAMP (cyclohexyl-o-anisylmethylphosphine) lead to the cycloadduct with low enantioselectivity (4–46% ee). (67)

EtO₂CO SO₂Ph 
$$X$$
  $X = NMeCH(CH2OH)2  $X = NMe2$   $X = NMe2$$ 

#### 4.3.4. Cycloaddition to Carbonyl Compounds

Although the palladium-catalyzed reaction of allylic acetate **41** and an aldehyde gives only the allylated product **216**, addition of a catalytic amount of  $R_3$ SnOAc (R = Me, Bu) results in a clean cycloaddition reaction to afford 2-substituted 4-methylenetetrahydrofurans **217** in high yield (Eq. 139). (146, 159) The reaction requires a mixture of approximately equimolar amounts of an aldehyde and precursor **41** in THF with a Pd(0) catalyst and

10-25 mol% of  $R_3SnOAc$  as a cocatalyst. In both chemical yield and cleanliness of the reaction, trimethyltin acetate is superior to tributyltin acetate. However, the toxicity and high volatility of trimethyltin acetate require careful handling. Allylic acetate **215** also gives a hetero[3 + 2] cycloadduct in the presence of Pd catalysts without an added tin cocatalyst. Although many ketones are unreactive, sterically unencumbered ketones, e.g. 3,5-dioxacyclohexenones, 5-oxacyclohexanones, a 2-acylfuran, and an alkynyl ketone serve as carbonyl acceptors in the cycloaddition.

#### 4.3.4.1. Chemoselectivity

The cycloadditions of enals and enones with TMM-Pd complexes take place with high chemoselectivity. The reaction of enals with precursor **215** occurs exclusively at the aldehyde group to give methylenefuran **218** (Eq. 140). (159)

$$\begin{array}{c|c}
 & Pd(OAc)_4, Ph_3P \\
\hline
Bu_3Sn & OAc
\end{array}$$

$$\begin{array}{c|c}
 & O \\
\hline
THF, reflux
\end{array}$$

$$\begin{array}{c|c}
 & (73\%) \\
\hline
218
\end{array}$$
(140)

On the other hand, cycloaddition takes place exclusively at the alkene moiety in the reaction of enones. For example, the reaction of enone 219 with one equivalent of precursor 41 occurs selectively at the alkene to give methylenecyclopentane 220 as the sole product (Eq. 141). (71) The carbonyl groups of compounds 219 and 220 are unreactive, but when there is a benzoyl protecting group, the carbon-oxygen double bond reacts with excess precursor 41 to give the bis-adduct 221 in moderate yield.

The course of the reaction is altered from cyclopentane formation to tetrahydrofuran formation by the use of an  $\ln^{3+}$  cocatalyst. Both tris(2,4-pentanedionato)indium and its hexafluoro analog direct the reaction course to 1,2-addition (Eq. 142). (160) Exomethylene enones, such as 222, which are particularly prone to conjugate addition, can be diverted, in the presence of the indium cocatalyst, from exclusive 1,4-addition yielding 223, to exclusive 1,2-addition yielding isomer 224.

"In" = tris(2,4-pentanedionato)indium

#### 4.3.4.2. Diastereoselectivity

The 1,2-diastereoselectivity of the reaction of TMM-Pd complexes with  $\alpha$ -substituted aldehydes is also excellent, and the cycloaddition with aldehyde 225 affords product 226 as a single diastereomer (Eq. 143). (159) The major pathway followed by the reaction is predicted by the Felkin-Anh model 227, whereas an alternative model 228, which better minimizes dipole-dipole and nonbonded interactions, predicts the same diastereoselectivity.

#### 4.3.4.3. Regioselectivity

Alkyl-, phenyl-, vinyl-, and acetoxy-substituted TMM-Pd complexes also react with aldehydes in the presence of organotin cocatalysts. In contrast to the cycloaddition of the substituted TMM-Pd complexes with electron-deficient alkenes, the regioselectivity of the hetero [3 + 2] cycloaddition varies depending on the structure of the TMM precursor as well as the reaction conditions.

Reaction of the methyl-substituted TMM, generated from precursor 229 in benzene with palladium acetate/Ph₃P as the catalyst and Me₃SnOAc as the cocatalyst, with cinnamaldehyde gives a mixture of products 232 and 233 (Eq. 144). (161) The product ratio depends on the concentration of precursor 229; higher concentration gives a higher 232:233 ratio (1.7:1 at 0.05 M and 8.1:1 at 0.30 M in 91–95% yield). In the presence of Bu₃SnOAc as the cocatalyst, the 232:233 ratio decreases to 1.6:1. On the other hand, the tin reagent 230 reacts well when Me₃SnOTs is used as the cocatalyst yielding a 32:1 mixture of isomers 232 and 233. Reaction of the isomeric precursor 231 in the presence

of Me₃SnOAc cocatalyst gives a 1:200 mixture favoring the opposite regioisomer 233.

Installation of conjugating groups on the TMM decreases the reactivity of the TMM–Pd complex. Thus, the cycloaddition of phenyl-substituted TMM–complexes generated from either pecursors 234 or 235 with cinnamaldehyde selectively gives isomers 236, which are derived from the thermodynamically more stable TMM complex, regardless of the structure of the precursors (Eq. 145). (161) Electron-withdrawing substituents, such as cyano and carbonyl, as the TMM substituents cause the TMM–Pd complex to be unreactive.

Ph

Me₃Si OAc

234

or + OHC

Ph

Me₃SnOAc

$$C_6H_6$$

Ph

Ph

236

(145)

Among various substituents on the TMM–Pd complexes, the phenylthio group serves as an effective regioselectivity control element. In the cycloaddition of mono- and disubstituted TMM–Pd complexes, initial bond formation occurs between the electrophilic terminus of the acceptor and the sulfide-bearing carbon of the TMM intermediate. The subsequent ring closure takes place at the less electron-rich allyl terminus of the intermediate  $\pi$  -allylpalladium complex (Eq. 146). (162)

PhS
$$Me_{3}Si \quad OCO_{2}Me$$
+
$$OOOO_{2}Me$$
Pd(OAc)₂/( $i$ -PrO)₃P/
$$Me_{3}SnOAc/BSA$$
toluene, 65-95°
$$OOOO_{2}Me$$
(41%) (146)

The regioselectivity of the cycloaddition is especially high when 2,4-bis[(4,6-dimethyl-1,3,2,-dioxaphosphorinan-2-yl)oxy]pentane (237) is used as a ligand. For example, cycloaddition with disubstituted TMM–Pd complexes requires the bidentate phosphite 237, and affords a single regioisomer (Eq. 147). (162)

### 4.3.5. Cycloaddition to C = N Double Bonds

Aryl- and alkyl-substituted imines react with the mesylate precursor **238** in the presence of a Ni(0) catalyst to give 4-methylenepyrrolidines. In the reaction with simple imines, Ni catalysts usually give better results than Pd catalysts. Various imines derived from aromatic, conjugated, and aliphatic aldehydes and ketones participate in the cycloaddition in good to excellent yields. In the reaction with cinnamaldehyde *N*-phenylimine, TMM addition takes place highly chemoselectively and occurs exclusively at the imine moiety (Eq. 148). (88)

$$\begin{array}{c|c}
 & NPh \\
 & Ni[P(OEt)_3]_4 \\
\hline
 & toluene, reflux
\end{array}$$

$$\begin{array}{c|c}
 & Ni[P(OEt)_3]_4 \\
\hline
 & Ph \\
\hline$$

Imines possessing an electron-withdrawing group either on the sp² nitrogen or on the sp² carbon show enhanced reactivity. (163) For example, tosylimines derived from aromatic and aliphatic aldehydes are excellent acceptors and react smoothly with TMM–Pd complexes to give the corresponding methylenepyrrolidines in good to excellent yields (Eq. 149). The *N*-phenylimine of ethyl glyoxylate also reacts with precursor 41 in the presence of a Pd(0) catalyst (Eq. 150).

$$Me_3Si$$
  $O_2CBu-t$  +  $Bu-t$   $Bu-t$   $Pd(OAc)_2/Ph_3P, BuLi$   $D_2CBu-t$   $Bu-t$   $D_2CBu-t$   $D_2CBu-t$ 

$$Me_{3}Si \xrightarrow{OAc} OAc \xrightarrow{NPh} CO_{2}Et \xrightarrow{Pd(OAc)_{2}/(i-Pr)_{3}P} \longrightarrow NPh CO_{2}Et \xrightarrow{(77\%)} (150)$$

Because of the stronger electron-withdrawing nature of the nitro group, nitrimines derived from relatively hindered ketones participate in the

cycloaddition. The menthone-derived nitrimine affords the cycloadduct with a 17:1 diastereoselectivity (Eq. 151). (163) These hindered acceptors give good yields of cycloadducts, but the unhindered nitrimines bearing an  $\alpha$ -hydrogen atom fail to give cycloadducts because of the ease of enolization.

$$Me_3Si OAc$$
 +  $Pd(OAc)_2/(i-PrO)_3P$   $O_2N$   $O_2N$ 

Cycloaddition with both the phenyl- and cyano-substituted TMM units to benzaldehyde *N*-tosylimine proceeds in high yield with excellent regioselectivity. (163) In the former example, the cycloadduct is formed as a 4.6:1 mixture of diastereomers (Eq. 152). In the latter example, the initial cycloadduct is not observed and isomerization of the initial product to the thermodynamically more stable endocyclic conjugated isomer takes place under the reaction conditions (Eq. 153).

#### 4.3.6. Intramolecular Applications

Intramolecular versions of the reaction provide a valuable synthetic route to bicyclo[3.n.0]alkane ring systems. When TMM precursor **239** tethered to an  $\alpha$ ,  $\beta$ -unsaturated ester is treated with a Pd(0) catalyst, the cycloaddition occurs selectively via the exo mode to form the cis bicyclo[3.3.0]octane **240** as the sole product (Eq. 154). (164, 165) No product derived from endo cycloaddition to form the seven-membered ring is observed.

BSA: N,O-bis(trimethylsilyl)acetamide

An ester group can serve as a cleavable tether. For example, cycloaddition of the cyclic  $\alpha$ ,  $\beta$ -unsaturated sulfone **241** followed by hydrolysis of the ester affords the bicyclo[3.4.0]-, [3.5.0]-, and [3.6.0] skeletons with high efficiency. The cycloaddition mainly affords the cis-ring-fused products **242**, but small amounts of the isomerized products **243** and trans-fused product **244** are formed (Eq. 155). (166) Because the intermolecular cycloaddition to medium ring alkenes often fails, this reaction sequence serves as a convenient alternative for the synthesis of variety of bicyclic carbocycles.

Me₃Si Pd(OAc)₂/  
MeO₂CO 
$$\frac{Pd(OAc)_2}{(i-PrO)_3P}$$
  $\frac{PhO_2S}{dioxane, reflux}$  +  $\frac{PhO_2S}{PhO_2S}$   $\frac{PhO_2S}{242}$   $\frac{PhO_2S}{243}$   $\frac{PhO_2S}{244}$  (155)  

$$\frac{n}{2} \frac{242+243+244}{1} \frac{242:243:244}{1} \frac{242:243:244}{1} \frac{25:7:1}{3} \frac{25:7:1}{3} \frac{1}{3} \frac{(78\%)}{3} \frac{9:8:1}{3}$$

#### 4.3.6.1. Effects of Tether Length

Cycloadditions also proceed with substrates bearing four- and five-carbon tethers, yielding bicyclo[4.3.0]nonane and bicyclo[5.3.0]decane ring systems. The formation of bicyclo[4.3.0]nonanes is less selective with respect to the ring junction, and the reaction of four carbon tethered compound **245** affords a 2:1 mixture of  $\beta$ - and  $\alpha$ -adducts **246** (Eq. 156). (165) The configuration of the trans-vinylsulfone is retained in the product, but not in the corresponding reaction of the cis-vinylsulfone, since the reaction occurs in a stepwise fashion.

Me₃Si OCO₂Me
PhO₂S PhO₂S PhO₂S H

$$(Ph_3P)_4Pd/dppe$$
BSA, THF, reflux
$$(Ph_3P)_4Pd/dppe$$
PhO₂S H
$$(73\%)$$
 (156)

The formation of seven-membered rings is less efficient than that of five- and six-membered rings, and the five carbon tethered vinylsulfone **247a** does not give any cycloadduct. In such a case, the use of a highly electron-deficient alkene is effective and the reaction of doubly activated substrate **247b** proceeds smoothly to give adduct **248** as the sole product after isomerization of the exomethylene double bond (Eq. 157). (167)

#### 4.3.6.2. Effects of Substituents

Incorporation of an acyl substituent  $\alpha$  to the silyl group on the TMM, like the TMM generated from **247**, considerably improves the efficiency of cycloaddition by minimizing the protodesilylation reaction, which is a serious side reaction when the TMM is not acyl-substituted. Intramolecular reaction of a substituted TMM-Pd species permits the synthesis of bicyclo[n.3.0]alkane (n = 3–5) ring systems. (168)

### 4.4. Cycloaddition of Stable TMM-Metal Complexes

Although the intermolecular cycloadditions of stable  $\eta^4$ -TMM- Fe(CO)₃ complexes with alkenes are generally not synthetically useful, the intramolecular reactions can be useful with proper choice of substrates. Thus,

the oxidative decomplexation of *E*-substituted TMM-Fe complexes **249** bearing an enone moiety takes place smoothly, and leads solely to the bicyclic methylenediquinane ketones **250** (Eq. 158), whereas the *Z*-substituted TMM complexes **251** are converted exclusively to 5-vinylcyclooctenones **252** (Eq. 159). (169)

### 5. Synthetic Applications

The TMM cycloaddition has been applied to a number of total syntheses and synthetic studies of various natural products. The main advantage of this method is the single-step construction of five-membered rings from readily available starting materials. It is also worth noting that the MCP route gives cyclopentane derivatives with high atom economy. The cycloaddition reaction often takes place with high levels of regio- and stereoselectivity to generate multiple stereogenic centers on the five-membered rings. In addition, the reaction provides an alkylidene functional group that is useful for further synthetic transformations.

The cycloaddition of the TMM-Pd complex generated from precursor **41** with enantiomerically pure enoate **253** takes place with high diastereoselectivity and with control of the trans ring junction. The cycloadduct **254** has been converted to (+)-brefeldin A (Eq. 160). (170)

Cycloaddition with cyclic acceptors provides a valuable method for the preparation of bicyclo[3.n.0]alkane structures. Cycloaddition of the TMM–Pd complex with 2,3-dicarboethoxynorbornene is a key reaction for a five-step synthesis of (±)-albene. (171) The regioselective cycloaddition of the methyl-substituted TMM–Pd complex with cyclopentenone creates the proper substitution pattern for the synthesis of the members of the iridoid family, such as loganin aglycon and chrysomelidial. (172)

The TMM cycloaddition is useful for the synthesis of not only naturally occurring biologically active compounds, but also unnatural bioactive compounds. For example, the thermal cycloaddition of TMM and buckminsterfullerene (C₆₀) gives isomeric cycloadducts **255** and **256** (Eq. 161). (173) Further functionalization of the hydroxyl group of isomer **256** allows the synthesis of the water-soluble derivative **257**, which shows distinct photo-induced biological activities including cytotoxicity, DNA cleavage, and inhibition of enzymes. (174-177) The use of a ¹⁴C-labeled TMM allowed the synthesis of the first radio-labeled water-soluble fullerene derivative and revealed the first pharmacokinetic behavior of an organofullerene. (178)

The diversity of functional groups on the cycloadducts of TMM species is useful for further elaboration to complex structures. For example, the exomethylene moiety of the TMM-cyclopentenone adduct **258** serves as a precursor of a gem-dimethyl group, and the ketone moiety derived from cyclopentenone serves as a directing group for the subsequent construction of an additional methylenecyclopentane ring (Eq. 162). (179) The Pd-catalyzed cycloaddition of TMM to activated bicyclooctane **259** 

sets two stereogenic centers with complete selectivity to give product 260, and the subsequent intermolecular aldol condensation of the diketone 261 provides a straightforward construction of hydroxykempenone skeleton 262 with high efficiency (Eq. 163). (180) The exomethylene group of the cycloadduct is also used as the dienophile in the Diels-Alder reaction. A sequence of [3 + 2] cycloaddition, cobalt mediated [2 + 2 + 2] cycloaddition, and [4 + 2] cycloaddition provides stereoselective and straightforward access to the phyllocladane skeleton in eight, high-yielding steps starting from 1,5-hexadiyne (Eq. 164). (181)

$$\begin{array}{c} 41 \\ Pd(OAc)_2/(EtO)_3P \\ THF \\ MeO_2C \\ H \\ 259 \\ 260 (98\%) \end{array} \tag{163}$$

The enantiomerically enriched cyclopentanone 264 is formed by the stereoselective Pd-catalyzed [3 + 2] cycloaddition of the 4-methoxyphenyl-substituted TMM with enantiomerically enriched substrate 263 followed by hydrolysis, esterification, and ozonolysis. Carbon-carbon bond formation with the carbonyl moiety of intermediate 264 and subsequent cyclization provides a synthetic route to (-)-rocaglamide (Eq. 165). (182)

reflux

Me₃Si

Cyclopropyl-substituted methylenecyclopentanes are formed by the cycloaddition of cyclopropyl-substituted TMM derivatives. The vinylcyclopropane moiety in the cycloadduct rearranges to the cyclopentene upon thermolysis. For example, cycloadduct 265 undergoes vinylcyclopropane rearrangement and retro Diels—Alder reaction to form product 266 by flash vacuum pyrolysis (FVP). Functionalization of the enone moiety and subsequent oxidative cleavage of the internal double bond provides a synthetic route to 11-hydroxyjasionone (Eq. 166). (183) In addition to

thermal rearrangements, transformation of vinylcyclopropanes to substituted dienes followed by coupling with an alkyne in the presence of a Rh catalyst has also been reported (Eq. 167). (126)

$$EtO_{2}C CO_{2}Et$$

$$(43\%)$$

$$EtO_{2}C CO_{2}Et$$

$$AgOTf$$

$$Me = Me$$

$$EtO_{2}C CO_{2}Et$$

$$(83\%)$$

Intramolecular cycloaddition also provides a single-step construction of a variety of fused and bridged ring systems. The cycloaddition of the cyclic TMM derived from diazene 112 gives linearly fused triquinane 113, which is easily converted into coriolin and hypnophilin (Eq. 168). (99) Pd-catalyzed intramolecular reaction is also useful for the synthesis of conformationally restricted kainic acid derivatives (Eq. 169). (184)

DIPHOS: 1,2-diphenylphosphinoethane

(169)

Cycloaddition/oxidative ring enlargement is a useful method for the synthesis of medium-sized ring compounds. For example, tricyclic compound **271** is prepared starting from diazene **267** followed by several chemical transformations on the [3 + 2] cycloadduct **268**. Oxidative cleavage of the double bond of product **269** provides the cyclooctane **270**, which is a precursor of the taxol skeleton **271** (Eq. 170). (185)

Direct formation of medium-sized rings is also possible. The intramolecular cycloaddition of substrate **272** gives a seven-membered product which is converted into (–)-isoclavukerin A (Eq. 171). (167)

## 6. Comparison with Other Methods

While 1,3-dipolar cycloaddition is a well-known [3 + 2] cycloaddition for the synthesis of heterocycles, there are few reported methods for single-step construction of five-membered carbocycles besides TMM cycloadditions. (186, 187) This section covers the single-step or the one-pot construction of five-membered rings by cycloaddition or annulation. Sequential multi-step cycloaddition reactions are not covered, as they have already been reviewed. (188, 189)

Me
$$_{3}$$
Si
Me $_{2}$ C
Me $_{3}$ Si
Me $_{2}$ C
Me $_{3}$ SnOAc
toluene, 50-55°
Me $_{2}$ C
Me $_{2}$ C
Me $_{3}$ SnOAc
toluene, 50-55°
Me $_{2}$ C
Me $_{2}$ C
Me $_{3}$ SnOAc
toluene, 50-55°
Me $_{2}$ C
Me $_{3}$ SnOAc
toluene, 50-55°
Me $_{3}$ C
Me $_{2}$ C
Me $_{3}$ C
Me $_{3}$ C
Me $_{3}$ C
Me $_{4}$ C
Me $_{5}$ C
Me

Vinylcarbene possesses four  $\pi$  electrons on its 1,3-dipole skeleton, and a dipolar vinylcarbene thermally generated from cyclopropenone acetal reacts with highly electron-deficient olefins to give cyclopentenone acetal derivatives (Eq. 172). (190-192) Recent advances in the synthesis of various substituted derivatives of cyclopropenone acetal (R¹ ¹ H) greatly expand the utility of this method. (193-197)

$$\bigcap_{R^{1}} O = \left[ \bigcap_{R^{1} \leftarrow -}^{O} O + O \right] \xrightarrow{E} E \qquad \bigcap_{R^{1} \leftarrow -}^{E} (172)$$

The allyl anion also possesses a 4  $\pi$  -electron system that is potentially suitable for the concerted [3 + 2] cycloaddition reaction to form a cyclopentane anion. The allylic lithium reagent generated by deprotonation of  $\alpha$  -methylstyrene (273) undergoes stereospecific cyclization with *trans*-stilbene to give product 274 after protonation (Eq. 173). (198) Allylic lithium reagents possessing anion-stabilizing groups, such as cyano (275) (199, 200) and  $SO_2R$  (276), (201) also react with olefins to give cyclopentane derivatives. A stepwise mechanism has been proposed for the annulation of anion 276 with alkenes.

Ph 
$$\leftarrow$$
 LDA  $\rightarrow$  Ph  $\rightarrow$ 

$$Ph$$
 $Ph$ 
 $Ph$ 
 $PhO_2S$ 
 $PhO_2S$ 
 $PhO_2S$ 
 $PhO_2S$ 

Several  $\sigma$  -allyl- and  $\sigma$  -allenylmetal compounds have been employed for the cyclopentane annulation reactions. For example, allenic silane 277 reacts with

an electron-deficient olefin in the presence of a Lewis acid to form substituted cyclopentene **279** (Eq. 174). (202, 203) 1,2-Cationic shift of the trimethylsilyl group as represented in intermediate **278** gives a [3 + 2] annulation product. Allylic and propargyl silanes and allylic stannanes also undergo similar types of [3 + 2] annulations which involve 1,2-cationic silyl and stannyl migration. (204-208) Enantiomerically enriched cyclopentane products are formed when enantiomerically enriched allylic silanes are employed (Eq. 175). (209)

Several  $\sigma$  -allyl-,  $\sigma$  -propargyl-, and  $\sigma$  -allenyl transition metal species, derived from Fe, W, and Cr, also react with highly electron-deficient olefins. (210-212) This type of reaction also involves a 1,2-cationic shift of the metal group. The annulation of allenyliron complex **280** has been applied to the synthesis of azulene **282** by using tropylium iron complex **281** as an acceptor (Eq. 176). (213)

$$Fp + CP(CO)_{2}Fe + CO)_{3}Fe^{+} + CP_{2}Cl_{2} - CP_{2}Cl_{2}$$

Although allyl cations possess a 2  $\pi$  electronic system that is electronically unsuitable for [3 + 2] cycloaddition reactions, they undergo stepwise [3 + 2] annulation with proper choice of substituents. For example, oxyallyl cation 283, which is generated from 1,3-dibromoacetone and Fe₂(CO)₉, reacts with conjugated or electron-rich alkenes to afford cyclopentane derivatives (Eq. 177). (214-216) Organosulfur groups are good reaction-controlling groups, and sulfur-substituted allyl cation 285 generated from precursor 284 reacts with a variety of electron-rich and unactivated alkenes (Eq. 178). (217) The reaction of cation 285 with 286 is the key step in the synthesis of coriolin (Eq. 179). (218)

Tandem radical cyclizations of homopropargyl radicals with alkenes also give cyclopentanes (Eq. 180). (219, 220) The reaction involves generation of homopropargyl radical 287 from homopropargyl iodide followed by consecutive C-C bond formation of 287 with methyl acrylate and intramolecular addition of the alkyne moiety of the resulting radical 288 to form the five-membered ring radical 289.

Various cyclopropane derivatives serve as three-carbon units for [3 + 2] annulation. Electron-poor (221) and electron-rich cyclopropanes (222) serve as three-carbon units, but their synthetic utilities are rather limited. Vinylcyclopropanes undergo cyclopropane ring opening and subsequent annulation with alkenes in the presence of a metal catalyst (Eq. 181) (223) or a thiyl radical catalyst. (224, 225) Addition of the catalyst to

the double bond of the vinylcyclopropane triggers the ring opening. Cyclopropanes bearing electron-donating and accepting groups also react with alkenes in the presence of fluoride ion or Lewis acid. (226, 227) Fluoride ion induced desilylation of siloxycyclopropane ester 290 and concomitant ring opening generate homoenolate system 293. The successive trapping of 293 with activated alkenes such as vinylphosphonium salt 291, followed by intramolecular Wittig reaction of the resulting ylide 294, gives rise to product 292 (Eq. 182). (226)

Zinc homoenolates also serve as three-carbon units. For example, the reaction of zinc homoenolate **295** and activated alkyne **296** affords cyclopentene **297** through conjugate addition, intramolecular aldol condensation, and dehydration (Eq. 183). (228, 229)

Allenic esters and electron-deficient alkenes undergo [3 + 2] annulation in the presence of a phosphine catalyst (Eq. 184). (230) The reaction is initiated by addition of phosphine to the allenic ester to give zwitterionic intermediate 298, which reacts with electron-deficient alkenes to give ylide 300 via zwitterion 299. Subsequent phosphine elimination gives rise to the product. When enantiomerically enriched phosphine 301 is used as the catalyst, high asymmetric induction is observed. (231)

$$CO_{2}Et + CO_{2}Bu-i - PR_{3}$$
 $O^{\circ}$ 
 $O^{$ 

 $\alpha$  ,  $\beta$  -Unsaturated acylsilanes also serve as three-carbon units in [3 + 2] annulations with ketone enolates (Eq. 185). (232) The reaction involves addition of a ketone enolate

TBDMS 
$$+$$
 LiO Pr- $i$   $\overline{-80 \text{ to } -30^{\circ}}$   $\overline{-80 \text{ to } -30^{\circ}}$ 

to an acylsilane such as **302** followed by the Brook rearrangement of intermediate **303** to allylic lithium agent **304**. Subsequent intramolecular addition of the latter to the carbonyl group gives rise to the formation of product **305** after hydrolysis.

A functionalized allylic halide serves as a dianion in the presence of a reducing agent. (233, 234) Thus the allylic metal species generated from precursor 306 with zinc or tin(II) fluoride reacts with a 1,2-dione to generate the ketolate intermediate 307. Its carbonyl group, which is activated by the neighboring metal alkoxide, is then attacked stereoselectively by the allylic silane to give a 4-methylenecyclopentane-1,2-diol derivative (Eq. 186).

### 7. Experimental Conditions

The optimal conditions for the cycloaddition are highly dependent on the TMM precursors and 2  $\pi$  -acceptors. Therefore, only a few general considerations, e.g. solvent, temperature, and catalysts, are given below.

### 7.1. Free Trimethylenemethane from Diazene

The majority of the intramolecular reactions are carried out in acetonitrile or THF solution at the reflux temperature. The use of degassed solvents is preferable to avoid undesirable side reactions with dioxygen. High dilution or slow addition of the diazene is required to avoid intermolecular side reactions. The reaction can be also carried out at low temperature by photolysis, and these conditions are especially useful for achieving high stereoselectivity. (98, 99)

#### 7.2. Dipolar Trimethylenemethane from methylenecyclopropane

Although the reaction requires essentially no solvent, most of the reactions are carried out in an acetonitrile or propionitrile solution at 60–100°, because generation of the TMM takes place much faster in a polar solvent than in a non-polar solvent. Whereas the reaction does not require rigorous exclusion of moisture or air because of the singlet nature of the dipolar TMM, the use of an anhydrous solvent under an inert atmosphere is generally preferred.

#### 7.3. Transition Metal Catalyzed Reactions of Methylenecyclopropanes

The choice of the metal catalyst and the phosphine ligand is critical for the reaction. Palladium catalysts are used more often than nickel catalysts because the reaction pathways are more predictable. The latter tends to be more reactive than the former. Palladium catalysts usually require a phosphine ligand, and  $i\text{-}Pr_3P$  is most commonly used. The catalysts are usually prepared in situ by mixing Pd(dba)₂ or Pd(allyl)Cp with one equivalent of  $i\text{-}Pr_3P$ . The nickel catalyst prepared from Ni(cod)₂ and (2-PhC₆H₄O)₃P is especially useful for cycloaddition with alkynes. (132) The reactions are routinely carried out in toluene or without solvent.

### 7.4. Transition Metal Catalyzed Reactions of Silylated Allylic Acetates

The most frequently employed catalyst for this reaction is a palladium catalyst generated from Pd(OAc)₂ and (*i*-PrO)₃P. Most of the reactions are carried out in THF or toluene solution at 60–110°, and the solvent choice sometimes affects the results.

Acetate is routinely used as the leaving group, although other ester derivatives, including carbonate, benzoate, and mesylate, can be used as well, and the leaving group sometime affects the course of the reaction.

### 8. Experimental Procedures

#### 8.1. Preparation of TMM precursors

$$CI$$
  $\frac{\text{NaNH}_2}{t\text{-BuOH/THF}}$   $\frac{1}{34}$ 

### 8.1.1. Methylenecyclopropane(34) (114)

A dry, 3-L, three-necked, round-bottomed flask with ground glass fittings was equipped with a sealed stirrer driven by a heavy-duty motor, an efficient condenser fitted with a silica gel drying tube, and a 500-mL, pressure-equalizing dropping funnel connected to a nitrogen inlet. The flask was charged with 450 g (11.50 mol) of sodium amide and 750 mL of anhydrous THF, and the dropping funnel with a solution of 283.5 g (3.83 mol) of anhydrous tert-butyl alcohol in 300 mL of anhydrous THF. While the sodium amide suspension was stirred vigorously under a nitrogen atmosphere, the solution of *tert*-butyl alcohol was added dropwise at room temperature over 3 hours. The stirred mixture was heated to 45° in an oil bath for 2 hours. The outlet of the condenser was connected with an adapter to a 250-mL gas-washing bottle containing 100 mL of 5 N sulfuric acid, to trap evolved ammonia. A silica gel drying tube (15-cm long) joined the gas washing bottle to a 300-mL cold trap protected from the atmosphere with a calcium chloride drying tube and cooled in a MeOH/dry ice bath maintained at -80°. A solution of 228 g (2.52 mol) of 3-chloro-2-methyl-1-propene in 500 mL of dry THF was added to the stirred basic mixture, which was then heated to 65° over a period of approximately 8 hours; a light nitrogen stream was used to carry 34 into the cold trap. After the addition was complete, the reaction mixture was stirred and heated to 65° for an additional 3 hours. The trap flask contained 58 g (43%) of methylenecyclopropane. IR (gas) 1789 cm⁻¹; ¹H NMR (100 MHz, neat, -10°) δ 0.91 (d, J = 1.8 Hz, 2 H), 2.12 (d, J = 1.8 Hz, 2 H), 6.47 (m, 2 H); MS m/z (%) 54 (M⁺, 77.9), 53 (46.5), 51 (29.1), 39 (100), 28 (38.0), 27 (86.3).

### 8.1.2. 6,6-Dimethyl-4,8-dioxa-1-methylenespiro[2.5]octane(12) (50)

To a solution of 8.41 g (60.0 mmol) of

6,6-dimethyl-4,8-dioxaspiro[2.5]oct-1-ene (125) and 10.75 g (60.0 mmol) of HMPA in 60 mL of THF was added 36.8 mL (60 mmol) of n-BuLi (1.6 M in hexane) at -78° under nitrogen, and the resulting solution was stirred for 30 minutes at this temperature. To this solution was added 9.37 g of CH₃I (66.0 mmol) during 15 minutes. The reaction mixture was gradually warmed to room temperature over 1 hour, and was quenched by addition of saturated aqueous ammonium chloride solution over 5 minutes. The aqueous layer was extracted with Et₂O, and the combined organic extracts were washed with saturated aqueous sodium bicarbonate solution, and brine, dried over sodium sulfate, and concentrated in vacuo to afford an oily product (10.30 g). To a solution of the crude product in 10.3 mL of Et₂O was slowly added a solution of 1.35 g (12.0 mmol) of potassium tert-butoxide and 2.80 g (36.0 mmol) of DMSO in 10.0 mL of ether at 0° under nitrogen. After the solution was stirred for 2 hours at room temperature, the reaction mixture was quenched by addition of saturated aqueous ammonium chloride solution. The aqueous phase was extracted with Et₂O, and the combined extracts were washed with saturated aqueous sodium bicarbonate solution, and brine, and dried over sodium sulfate. Concentration in vacuo afforded an oily product (8.90 g). Purification on silica gel (elution with Et₂O:pentane 1:24) followed by distillation under reduced pressure (bp 72-73°/18 mm Hg) afforded 6.46 g (70% yield) of the title product. IR (neat) 3150(w), 1270, 1255, 1245, 1150, 1140, 1070, 1030, 1015, 970, 905 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 1.04 (s, 3 H), 1.06 (s, 3 H), 1.62 (dd, J = 3.1, 2.4 Hz, 2 H), 3.63 (s, 4 H), 5.45 (t, J = 2.4 Hz, 1 H), 5.81 (t, J = 3.1 Hz, 1 H); ¹³C NMR (CDCl₃, 67.5 MHz)  $\delta$  18.5 (t), 22.25 (q), 22.3 (q), 30.84 (s), 76.8 (t, two overlapping signals) 84.7 (s), 105.7 (t), 134.6 (s). Anal. Calcd. for C₉H₁₄O₂: C, 70.10; H, 9.15. Found: C, 70.02; H, 9.25.

$$\begin{array}{c|c} C_6H_{11} & \underline{Sm/CH_2I_2} \\ OH & \underline{Me_3SiCl, THF} & \underbrace{OH} \\ 308 & \\ \end{array}$$

#### 8.1.3. α -(Methylenecyclopropyl)cyclohexanemethanol(308) (116-118)

To a flame-dried round-bottomed flask was added Sm metal (36.0 g, 239 mmol). The flask was flame dried again while being flushed with  $N_2$ . After the flask cooled to room temperature, THF (500 mL) was added, followed by Me₃SiCl (1.50 mL, 11.8 mmol). The suspension was stirred for 30 minutes at room temperature. 1-Cyclohexyl-2,3-butadienol (5.00 g, 29.8 mmol) was dissolved in a small volume of THF and was transferred via cannula to the

flask. The suspension was stirred for 20 minutes at room temperature. The flask was cooled to  $-78^{\circ}$ , and  $CH_2I_2$  (19.0 mL, 236 mmol) was added dropwise. The mixture warmed to room temperature over 3 hours and was stirred overnight. The viscous, dark blue reaction mixture was quenched by addition of a saturated aqueous potassium carbonate solution and was extracted three times with  $Et_2O$ . The organic layer was collected, then washed three times with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude mixture was found by GC analysis to be a 1:1.7 mixture of two diastereomers. After flash chromatography,  $(R^*, S^*)$ -308 (1.34 g) and  $(R^*, R^*)$ -308 (2.33 g) were isolated in a combined yield of 67%.

 $(R^*,S^*)$ - α -308:  $R_f$  0.28 on silica gel (hexane:Et₂O 2:1); IR (neat) 3381 (br s), 3072 (w), 3051 (w), 2924 (s), 2854 (s), 1743 (w), 1448 (s), 1406 (m), 1124 (m), 1089 (m), 1019 (s), 885 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.95 (m, 1 H), 1.30–0.99 (m, 6 H), 1.46 (m, 1 H), 1.50 (d, J = 3.4 Hz, 1 H), 1.87-1.58 (m, 6 H), 2.83 (ddd, J = 8.4, 6.2, 3.4 Hz, 1 H), 5.37 (m, 1 H), 5.40 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 7.2, 10.8, 26.1, 26.2, 26.5, 28.9, 28.9, 44.0, 78.7, 104.4, 133.3; HRMS Calcd. for C₁₁H₁₇O (M – H)⁺: 165.1279. Found: 165.1289. ( $R^*,R^*$ )- α -308:  $R_f$  0.47 on silica gel (hexane:Et)₂O2:1); IR (neat)3402(br s),3072(w),3044(w),2924(s),2854(s),1743(w),1448(s),1398(m),1131(m),1103(m),1012(s),892(s) cm⁻¹; ¹H NMR (400 MHz,CDCl₃) δ 0.97(m,1 H),1.30-1.05(m,6 H),1.37(m,1 H),1.48(m,1 H),1.92-1.58(m,6 H),2.94(ddd,J = 7.0,6.2,5.7 Hz,1 H),5.44(m,1 H),5.50(m,1 H); ¹³C NMR (100 MHz,CDCl₃) δ 8.2,19.6,14.1,26.3,26.5,28.6,29.0,44.5,78.5,104.2,133.3.

OH 
$$\frac{1. n\text{-BuLi}}{2. \text{Me}_3 \text{SiCl}, \text{Et}_2 \text{O}}{3. \text{H}_3 \text{O}^+}$$
4. AcCl, pyridine  $\frac{309: \text{R} = \text{SiMe}_3}{310: \text{R} = \text{H}}$ 
41: R = Ac

#### 8.1.4. (2-Acetoxymethyl)-3-allyltrimethylsilane(41) (69)

A three-necked flask equipped with a mechanical stirrer, nitrogen inlet, and septum was charged with n-BuLi (1.45 M in hexane, 170 mL, 246 mmol). The bulk of hexane was removed in vacuo using a vacuum pump or an aspirator at 15–30 mm Hg. Anhydrous Et₂O (135 mL) and TMEDA (40 mL, 246 mmol) were added at 0°. 2-Methyl-2-propen-1-ol (8.7 g, 121 mmol) was added dropwise over 15 minutes. THF (60 mL) was then introduced, and the mixture turned from cloudy to clear yellowish orange. The reaction mixture was warmed to room temperature over 4–6 hours and then was stirred for 32 hours.

To the dark-red, gummy mixture was added Me $_3$ SiCl (65 mL, 512 mmol) rapidly at 0 to  $-10^\circ$ . The reaction mixture was stirred for 10 minutes and then was diluted with 1 g/L of Et $_2$ O. The dark, cloudy mixture was washed with saturated aqueous sodium bicarbonate solution (250 mL), water (250 mL), saturated copper sulfate solution (2 × 250 mL), water (100 mL), and brine (200 mL), and the extracts were dried over potassium carbonate. The solvent was carefully removed in vacuo, and the orange residue was then distilled through a Vigreux column to give 14.5 g (55%) of 2-[(trimethylsiloxy)methyl]-3-allyltrimethylsilane (309) as a colorless oil [bp 67° (5.5 mm Hg)].

To a solution of intermediate 309 (13.5 g, 6 mmol) in 140 mL of THF was added 30 mL of 1 N H₂SO₄. The mixture was stirred vigorously for ca. 0.5 hour at room temperature. Anhydrous potassium carbonate was added carefully until the bubbling subsided. The mixture was diluted with 500 mL of Et₂O, and the organic phase was washed with saturated aqueous sodium bicarbonate solution (100 mL) and brine (100 mL), and then dried over magnesium sulfate. The solvent was removed in vacuo with care to give 9.3 g (100%) of 2-(hydroxymethyl)-3-allyltrimethylsilane (310) as a colorless oil. The crude material was used in the next step without purification.

To a solution of alcohol **310** (7.7 g, 53 mmol) in pyridine (15 mL, 185 mmol) and 60 mL of CH₂Cl₂ at 0° was added acetyl chloride (6.5 mL, 91 mmol) dropwise over 10 minutes. The white, cloudy mixture was stirred for 30 minutes and then was diluted with 500 mL of Et₂O. The mixture was washed with saturated aqueous sodium bicarbonate solution (2 × 100 mL), saturated copper sulfate solution (3 × 100 mL), water (100 mL), and brine (100 mL), and the extract was dried ( $K_2CO_3$ ). The solvent was removed by rotary evaporation and the residue was distilled [bp 95° (7 mm Hg)] to give 9.1 g (92%) of title product **41** as a colorless liquid. IR (neat) 3070, 2945, 2885, 1753, 1643, 1372, 1250, 1044, 840 cm⁻¹; ¹H NMR (270 MHz)  $\delta$  0.05 (s, 9 H), 1.55 (s, 2 H), 2.09 (s, 3 H), 4.44 (br s, 2 H), 4.72 (br s, 1 H), 4.88 (m, 1 H); ¹³C NMR (25 MHz)  $\delta$  – 1.4, 20.9, 23.6, 67.8, 109.6, 141.7, 170.4; MS m/z (%) M⁺ 186 (5), 147 (13), 143 (18), 129 (11), 117 (34), 75 (40), 73 (100). Calcd. for C₉H₁₈O₂Si: 186.1075. Found 186.1075.

## 8.1.5. 7-{5[(2-Methyl-1,3-dioxolan-2-yl)hex-5-enylidene]-2,3-diazabicyclo[ 2.2.1]}hept-2-ene(312) (185)

To a solution of

2-[1-(4-cyclopenta-2,4-dienylidenebutyl)vinyl]-2-methyl-1,3-dioxolane (311) (4.90 g, 21.1 mmol) in CH₂Cl₂ (84 mL) was added diethyl azodicarboxylate (3.83 g, 22 mmol) at room temperature. The solution was placed in the refrigerator (4°) for 8 hours. To the solution of crude carbamate was added dipotassium azodicarboxylate (41 g, 211 mmol), and the mixture was stirred with an overhead stirrer. The reaction mixture was cooled to 0°, and glacial acetic acid (18.1 mL, 316 mmol) was added dropwise via an addition funnel over 45 minutes. A vigorous gas evolution took place. After 4 hours, the reaction mixture was filtered through a sintered glass funnel with Et2O and concentrated in vacuo. The crude reduced carbamate was dissolved in EtOH (192 mL), the solution was degassed with argon for 20 minutes, and potassium hydroxide (21.3 g, 380 mmol) was added. The resulting mixture was heated at reflux for 2.5 hours and then was cooled to 0°. The reflux condenser was removed and replaced with an overhead stirrer. A solution of potassium ferricyanide (21.53 g, 65.41 mmol) in water (172 mL) was added via an addition funnel over 30 minutes. After 2.5 hours, the cloudy brown mixture was poured into a separatory funnel containing water (1 L) and Et₂O (300 mL). The aqueous layer was extracted with Et₂O (7 × 150 mL), and the combined organic layers were dried (MgSO₄) and concentrated in vacuo. Chromatography on silica gel (Et₂O:pentane 1:1) afforded 5.14 g (19.6 mmol) of the title product (93%). TLC ( $SiO_2$ ,  $Et_2O$ :pentane 1:1, vanillin)  $R_f$  0.4; IR (neat/ NaCl) 3092, 2984, 2941, 2888, 1645, 1455, 1039 cm⁻¹; ¹H NMR (400 MHz, CDCl₃)  $\delta$  5.38 (br s, 1 H), 5.26 (d, J = 1.0 Hz, 1 H), 5.12 (m, 2 H), 1.70–1.46 (m, 4 H), 1.45 (s, 3 H), 1.10 (d, J = 9.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃)  $\delta$  148.7, 145.0, 117.2, 110.3, 109.4, 76.8, 64.4, 30.1, 28.9, 28.0, 24.4, 21.5, 21.1; HRMS (CI/NH₃) Calcd. for  $C_{15}H_{23}O_2N_2$  [M + H]⁺: 263.1759. Found: 263.1748.

#### 8.2. Cycloaddition Reactions

$$C_{6}H_{4}OMe-p$$
 $C_{6}H_{4}OMe-p$ 
 $C_{6}H_{4}$ 

# 8.2.1. 7-(4-Methoxyphenyl)-2,3,3a,3b,4,5,7,7a-octahydrocyclopenta[a]pen talen-1-one(314 and 315) (84)

In a 100-mL, round-bottom flask equipped with a magnetic stirring bar, reflux condenser, and nitrogen inlet tube was placed a solution of 1.0 g (4.67 mmol) of anisyl azo compound **313** dissolved in 33.3 g (406 mmol) of cyclopentenone. The flask was immersed in an oil bath and the reaction mixture was slowly heated to 100° over a period of 1 hour. After an additional 1 hour at 100°, the reaction mixture was cooled to room temperature and the excess enone was recovered by bulb-to-bulb distillation. The resulting oil was dissolved in a minimal amount of  $CH_2Cl_2$  and was purified by medium-pressure liquid chromatography on a 15 × 1000-mm column packed with silica gel. Elution with  $Et_2O$ :pentane (1:2.3) afforded 169 mg (13%) of title product **314**, 315 mg (25%) of bridged cycloadduct, 75 mg (6%) of another bridged cycloadduct, and 104 mg (8%) of tricyclopentanoid **315**.

**314**: mp 91.5–92°; IR ( NaCl, film) 1730 cm⁻¹; ¹H NMR (CDCl₃)  $\delta$ 1.4–2.9 (m, 11 H, aliphatic), 3.65 (br s, 1 H, C<u>H</u>Ar), 3.75 (s, 3 H, OCH₃), 4.95 (dd, 1 H, vinyl), 5.15 (dd, 1 H, vinyl), 6.70 (AA¢BB¢, 2 H, aromatic), 7.15 (AA¢BB¢, 2 H, aromatic). HRMS Calcd. for C₁₈H₂₀O₂: 268.146. Found 268.148.

**315**: mp 81.5–82°; IR ( NaCl, film) 1730 cm⁻¹; ¹H NMR (CDCl₃)  $\delta$  1.6–2.8 (m, 11 H, aliphatic), 3.20 (m, 1 H), 3.70 (s, 3 H, OCH₃), 3.80 (br s, 1 H, C<u>H</u>Ar), 6.80 (AA¢BB¢, 2 H, aromatic), 6.95 (AA¢BB¢, 2 H, aromatic). Anal. Calcd. for C₁₈H₂₀O₂: C, 80.56; H, 7.51. Found: C, 80.52; H, 7.42.

#### 8.2.2. (3a α ,6a β ,7 α , 7a

# α )-2,3,3a,5,6,6a,7,7a-Octahydro-2,2-dimethyl-1H-cyclopenta(a)-pentalene -7-carboxylic acid Methyl Ester(85) (91)

A stirred solution of 300 mg (1.14 mmol) of azo compound **75** in 500 mL of dry MeCN was heated to reflux for 6 hours. The solvent was removed in vacuo to afford an oil, which was purified by medium-pressure liquid chromatography on silica gel to afford 214 mg (85%) of the title product and its epimer, respectively, as a 9:1 mixture. Complete separation of the isomers was accomplished by

further chromatography. **85**: IR ( NaCl, film) 3050, 2950, 1735, 1370, 1160 cm⁻¹; ¹H NMR (CDCl₃)  $\delta$  0.92 (s, 3 H), 1.03 (s, 3 H), 2.58 (d, J = 8 Hz, 1 H), 3.61 (s, 3 H), 5.20 (dt, J = 3, 2 Hz, 1 H); ¹³C NMR (CDCl₃)  $\delta$  25.9, 26.7, 28.2, 37.0, 39.9, 40.9, 47.3, 47.6, 50.5, 50.7, 51.4, 175.1. HRMS Calcd. for C₁₅H₂₂O₂: 234.16197. Found: 234.15891.

### 8.2.3. (3a,4 α,8

## $\alpha$ )-2-(3,3a,5,6,7,8-Hexahydro-2H-4,8-methanoazulen-4-yl)-2-methyl-1,3-di oxolane (3a $\beta$ :316a; 3a $\alpha$ :316b) (185)

A 2-L, round-bottomed flask was charged with MeCN (1000 mL) and the solvent was degassed with argon for 30 minutes. A reflux condenser was then attached to the round-bottomed flask. To the top of the reflux condenser was attached a 500-mL addition funnel, and the system was purged with argon. The addition funnel was charged with a solution of diazene 312 (15.30 g. 58.4 mmol) in previously degassed MeCN (500 mL) via cannula. The addition funnel was wrapped in aluminum foil to prevent photo-induced nitrogen extrusion of the substrate, and the MeCN in the round bottom flask was heated to reflux. The solution of diazene was slowly added dropwise (1 drop/4 seconds) through the condenser into the refluxing MeCN over 40 hours. After 40 hours, the empty addition funnel was rinsed with previously degassed MeCN (25 mL), which was added dropwise into the refluxing reaction mixture over a period of 15 minutes. The solution was heated to reflux for another 2 hours, cooled to room temperature, and the solvent was removed in vacuo. The crude oil was purified by chromatography on silica gel (Et₂O:pentane 1:19) to afford 11.1 g (81%) a mixture of products 316a and 316b in a ratio of 1:1, as well as a trace amount of linearly fused tricyclopentanoid product.

**316a**: TLC (SiO₂, Et₂O:pentane 1:10, vanillin)  $R_f$  0.42; IR (neat/ NaCl) 3045, 2936, 2871, 1451, 1375, 1154, 1080, 1040 cm⁻¹; ¹H NMR (400 MHz, CDCl₃)  $\delta$  1.27 (s, 3 H), 2.11 (m, 1 H), 2.50 (m, 1 H), 2.63 (m, 1 H), 2.68 (br s, 1 H), 2.64 (br t, J = 2.5 Hz, 1 H), 3.97–3.75 (m, 4 H), 5.49 (t, J = 4.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃)  $\delta$  19.8, 20.7, 29.7, 34.0, 34.8, 35.1, 37.6, 40.3, 49.4, 53.7, 63.8, 65.1, 112.7, 120.7, 157.6. HRMS (EI) Calcd. for C₁₅H₂₂O₂: 234.1619.

Found: 234.1611.

**316b**: TLC ( SiO₂, Et₂O: pentane 1:10, vanillin)  $R_f$  0.34; IR (neat/ NaCl) 3045, 2947, 2874, 1440, 1352, 1210, 1151, 1046 cm⁻¹; ¹H NMR (400 MHz, CDCl₃)  $\delta$  1.85–1.53 (m, 5 H), 2.11 (m, 1 H), 2.50 (m, 1 H), 2.63 (m, 1 H), 2.68(br s, 1 H), 3.05 (br t,J = 7.5 Hz, 1 H), 3.93–3.80 (m, 4 H), 5.12 (t, J = 1.5 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃)  $\delta$  18.6, 20.7, 27.1, 27.2, 33.6, 33.7, 37.0, 43.9, 49.0, 56.5, 64.8, 65.0, 112.4, 115.4, 157.7. HRMS (EI) Calcd. for C₁₅H₂₂O₂: 234.1619. Found: 234.1620.

## 8.2.4. 7-(4',4'-Dimethyl-2',6'-dioxacyclohexylidene)bicyclo[3.3.0]octan-2-one(317) (16)

A mixture of 8.48 g (55 mmol) of

6,6-dimethyl-4,8-dioxa-1-methylenespiro[2.5]octane (12) and 4.52 g (55 mmol) of 2-cyclopentenone in 15 mL of dry MeCN was heated at 60° for 12 hours. The solvent was removed by distillation (ca. 30–120°/ca. 20–1.4 mm Hg) and the residue was distilled under reduced pressure (bp 142–143°, 1.4 mm Hg) to afford 11.32 g (87%) of the title product.  1 H NMR (CD₃CN)  $\delta$  1.14 (s, 3 H), 1.15 (s, 3 H), 1.70–1.77 (m, 1 H), 1.89–2.17 (m, 4 H), 2.32–2.53 (m, 4 H), 2.63–2.68 (m, 1 H), 2.78–2.83 (m, 2 H), 3.77 (s, 2 H), 3.78 (s, 2 H);  13 C NMR (CD₃CN)  $\delta$  22.16 (q), 22.18 (q), 24.8 (t), 27.2 (t), 28.6 (t), 31.3 (s), 32.5 (t), 40.1 (t), 43.8 (d), 53.7 (d), 77.4 (t), 77.4 (t), 96.3 (s), 149.2 (s), 213.2 (s).

# 8.2.5. 1-Benzyloxy-2-(4'-chlorophenyl)-4-(2,2-dimethyl-3-hydroxypropoxy carbonyl) pyrrolidine(318) (50)

A mixture of 6,6-dimethyl-4,8-dioxa-1-methylenespiro-[2.5]octane (12) (0.79 g, 5.09 mmol) and *p*-chlorobenzaldehyde *O*-benzyloxime (1.02 g, 4.15 mmol, >99.8% anti) was heated for 46 hours at 100° under nitrogen. The reaction mixture was treated with 10% aqueous HCl solution in THF (2 mL) and was stirred for 30 minutes. After usual workup, purification of the resulting crude mixture by silica gel chromatography (EtOAc:hexane 1:3 and 1:1.5) afforded the title product in 98% yield (1.70 g) as a 73:27 diastereomeric mixture.

**Major diastereomer of 318:** IR (neat) 3450, 1724, 1496, 1373, 1188, 1092, 1050, 1019, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.91 (s, 6 H, CH₃), 2.00 (br dt, J = 12.7, 9.3 Hz, 1 H, C $H_2$ ), 2.26 (br s, 1 H, OH), 2.46 (ddd, J = 12.7, 8.8, 5.4 Hz, 1 H, C $H_2$ ), 3.03–3.18 (m, 2 H, CHCO₂, NC $H_2$ ), 3.28 (s, 2 H, C $H_2$ OH), 3.61 (dd, J = 8.8, 7.8 Hz, 1 H, NC $H_2$ ), 3.93 (d, J = 11.2 Hz, 1 H, CO₂C $H_2$ ), 3.98 (d, J = 11.2 Hz, 1 H, CO₂C $H_2$ ), 4.01 (dd, J = 9.3, 8.8 Hz, 1 H, NCH), 4.41 (d, J = 11.2 Hz, 1 H, OCH₂), 4.46 (d, J = 11.2 Hz, 1 H, OCH₂), 7.06–7.16 (m, 2 H, C₆H₅), 7.19–7.27 (m, 3 H, C₆H₅), 7.28 (d, J = 8.3 Hz, 2 H, p- ClC₆H₄), 7.33 (d, J = 8.3 Hz, 2 H, p- ClC₆H₄); ¹³C NMR (100 MHz, CDCl₃) δ 21.4 (CH₃, 2C), 33.2 (CH₂), 36.4 (C), 39.1 (CHCO₂), 58.4 (NCH₂), 68.1 (CH₂OH), 69.7 (CO₂CH₂), 70.2 (NCH), 75.7 (OCH₂), 127.7 (CH), 128.1 (CH, 2 C), 128.3 (CH, 2 C), 128.5 (CH, 2 C), 129.1 (CH, 2 C), 133.1 (C), 137.4 (C), 139.1 (C), 174.8 (C = O). Anal. Calcd. for C₂₃H₂₈NO₄Cl : C, 66.10; H, 6.75; N, 3.35. Found: C, 65.99; H, 6.67; N, 3.16.

**Minor diastereomer of 318**: IR (neat) 3430, 1735, 1492, 1370, 1192, 1091, 1050, 1017, 728, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (s, 3 H, CH₃), 0.91 (s, 3 H, CH₃), 2.06–2.22 (m, 1 H, C $H_2$ ), 2.20 (br s, 1 H, OH), 2.36–2.48 (m, 1 H, C $H_2$ ), 3.04–3.18 (m, 2 H, CHCO₂, NC $H_2$ ), 3.26 (s, 2 H, C $H_2$ OH), 3.57–3.66 (m, 1 H, NC $H_2$ ), 3.94 (d, J = 9.8, 8.8 Hz, 1 H, NCH), 3.95 (d, J = 10.7 Hz, 1 H, CO₂C $H_2$ ), 3.99 (d, J = 10.7 Hz, 1 H, CO₂C $H_2$ ), 4.42 (d, J = 11.2 Hz, 1 H, OCH₂), 4.49 (d, J = 11.2 Hz, 1 H, OCH₂), 7.08–7.16 (m, 2 H, Ph), 7.20–7.27 (m, 3 H, Ph), 7.28 (d, J = 9.1 Hz, 2 H, p-ClC₆H₄), 7.35 (d, J = 9.1 Hz, 2 H, p-ClC₆H₄); ¹³C NMR (100 MHz, CDCl₃) δ 21.4 (CH₃, 2 C), 33.5 (CH₂), 36.5 (C), 39.5 (CHCO₂), 58.7 (NCH₂), 68.2 (CH₂OH), 69.8 (CO₂CH₂), 70.9 (NCH), 75.9 (OCH₂), 127.7 (CH), 128.2 (CH, 2 C), 128.4 (CH, 2 C), 128.6 (CH, 2 C), 129.2 (CH, 2 C), 133.1 (C), 137.4 (C), 139.3 (C), 174.8 (C = O); Anal. Calcd. for C₂₃H₂₈NO₄Cl : C, 66.10; H, 6.75; N, 3.35. Found: C, 66.14; H, 7.13; N, 3.26.

# 8.2.6. 1-Benzyloxy-cis-4-(2,2-dimethyl-3-hydroxypropoxycarbonyl)-cis-3-i sopropyl-r-2-tert-butoxycarbonylpyrrolidine(154) (50)

A solution of substrate 29 (177 mg, 0.9 mmol) and glyoxalic acid *tert*-butyl ester *O*-benzyloxime (176 mg, 0.75 mmol, >99% anti) in CD₃CN (0.35 mL) in a sealed NMR tube was heated for 17 hours at 100°. The reaction mixture was treated with 10% aqueous HCl solution in THF (2 mL) and stirred for 5 minutes. After usual workup (addition of saturated aqueous sodium bicarbonate solution, extraction with Et₂O, washing the organic extracts with brine, drying over Na₂SO₄, and concentration in vacuo), purification by silica gel chromatography (EtOAc:hexane 1:3.2 and 1:2.3) afforded title product 154 in 79% yield (266 mg) and its isomer 155 in 10% yield (34 mg).

**154**: IR (neat) 3523 (OH), 2962, 2873, 1732 (C =O), 1456, 1369, 1257, 1225, 1157, 1052, 912, 847, 735, 698, 528 cm⁻¹; ¹H NMR (400 MHz, CDCl₃)  $\delta$  0.92 (s, 6 H, CCH₃), 0.93 (d, J = 8.0 Hz, 3 H, CHCH₃), 1.00 (d, J = 8.0 Hz, 3 H, CHCH₃), 1.49 (s, 9 H, OCCH₃), 2.00 (dq, J = 8.0, 8.0 Hz, 1 H, CH₃CH), 2.10 (ddd, J = 13.0, 10.0, 10.0 Hz, 1 H, CH₂), 2.27 (ddd, J = 13.0, 8.0, 5.0 Hz, 1 H, CH₂), 2.78 (ddd, J = 10.0, 8.0, 5.0 Hz, 1 H, CHCO₂), 3.30 (dd, J = 8.0, 4.0 Hz, 3 H, NCH, CH₂OH), 3.83 (dd, J = 10.0, 8.0 Hz, 1 H, NCHCO₂), 3.93 (s, 2 H, CO₂CH₂), 4.78 (d, J = 11 Hz, 1 H, OCH₂Ph), 4.95 (d, J = 11 Hz, 1 H, OCH₂Ph), 7.25–7.35 (m, 5 H, C₆H₅); ¹³C NMR (100 MHz, CDCl₃)  $\delta$  17.0 (CH₃), 19.7 (CH₃), 21.5 (CH₃, 2 C), 28.0 (CH₃, 3 C), 29.1 (CH₃CH), 30.1 (CH₂), 36.5 (CH₃C), 40.8 (CHCO₂), 68.1 (CH₂OH), 69.4 (NCHCO₂), 69.8 (CO₂CH₂), 75.9 (NCH), 76.5 (OCH₂), 81.2 (OCCH₃), 127.8 (CH), 128.3 (CH, 2 C), 128.6 (CH, 2 C), 137.2 (C), 171.3 (CO₂), 175.5 (CO₂). Anal. Calcd. for C₂₅H₃₉NO₆: C, 66.79; H, 8.74; N, 3.12. Found: C, 66.55; H, 8.44; N, 3.35.

**155**: IR (neat) 3510, 2962, 2873, 1732 (C = O), 1473, 1456, 1392, 1369, 1255, 1155, 1054, 847, 748, 698 cm⁻¹;  1 H NMR (400 MHz, CDCl₃)  $\delta$  0.91 (s, 6 H,

CCH₃), 0.93 (d, J = 6.8 Hz, 3 H, CHC $H_3$ ), 0.95 (d, J = 6.8 Hz, 3 H, CHC $H_3$ ), 1.48 (s, 9 H, OCCH₃), 1.81 (dq, J = 6.8, 6.8 Hz, 1 H, CH₃CH), 2.52 (m, 1 H, CH₃CHCH), 2.90 (dd, J = 8.0, 5.0 Hz, 1 H, CHCO₂), 3.23 (dd, J = 11.5, 8.0 Hz, 1 H, C $H_2$ ), 3.28 (s, 2 H, C $H_2$ OH), 3.48 (dd, J = 11.5, 8.0 Hz, 1 H, C $H_2$ ), 3.52 (d, J = 6.8 Hz, 1 H, NCHCO₂), 3.94 (s, 2 H, CO₂C $H_2$ ), 4.74 (s, 2 H, OCH₂Ph), 7.25–7.35 (m, 5 H, C₆H₅); ¹³C NMR (100 MHz, CDCl₃)  $\delta$  20.4 (CHCH₃), 20.5 (CHCH₃), 21.5 (CCH₃, 2 C), 28.0 (OCCH₃, 3 C), 31.6 (CH₃CH), 36.5 (CH₃C), 44.2 (CH₃CHCH), 45.6 (CHCO₂), 59.5 (CH₂), 68.1 (CH₂OH), 69.8 (CO₂CH₂), 74.1 (NCHCO₂), 75.5 (OCH₂Ph), 81.3 (OCCH₃), 127.8 (CH), 128.3 (CH, 2 C), 128.6 (CH, 2C), 137.3 (C), 171.2 (CO₂), 175.6 (CO₂). Anal. Calcd. for C₂₅H₃₉NO₆: C, 66.79; H, 8.74; N, 3.12. Found: C; 66.56; H, 8.49; N, 3.40.

# 8.2.7. Diethyl 7-Methylenespiro[2.4]heptane-trans-4,5-dicarboxylate(319) (126)

A solution of Pd(dba)₂ (600 mg, 1.04 mmol), (*i*-Pr)₂PBu-*t* (180 mg, 1.04 mmol), and diethyl fumarate (8.50 g, 49.4 mmol) in toluene (10 mL) was heated under reflux (110°), and a solution of cyclopropylidene cyclopropane (1.97 g, 24.6 mmol) in toluene (10 mL) was added dropwise over 0.5 hour. The mixture was heated to reflux for another 3 hours until the reaction was complete. Fractional distillation of the reaction mixture yielded the title product (5.44 g, 83% yield); bp 90–95°/1.5 bar; IR (film) 3079, 2983, 2955, 1734, 1653, 1447, 1371, 1345, 1185, 1096, 1031, 962, 865, 796 cm⁻¹; ¹H NMR (200 MHz)  $\delta$  0.59–1.06 (m, 4 H), 1.25 (t, J = 7.2 Hz, 6 H), 2.71 (ddt, J = 16, 8.6, 2 Hz, 1 H), 2.93 (ddt, J = 16, 8.6, 2 Hz, 1 H), 3.21 (d, J = 8.6 Hz, 1 H), 3.36 (q, J = 8.6 Hz, 1 H), 4.15 (m, 4 H), 4.33 (t, J = 2 Hz, 1 H), 4.62 (t, J = 2 Hz, 1 H); ¹³C NMR (50.3 Hz)  $\delta$  15.5, 16.2, 26.8, 35.5, 45.0, 52.2, 60.3, 60.4, 98.9, 153.4, 171.8, 173.3; MS (EI); m/z (%) 252 (M⁺, 13), 223 (9), 206 (9), 179 (25), 178 (45), 105 (100). HRMS (EI) Calcd. for  $C_{14}H_{20}O_4$ : 252.1362. Found: 252.1361. Anal. Calcd. for  $C_{14}H_{20}O_4$ : C, 66.64; H, 7.99. Found C, 66.88; H, 8.21.

MeO₂C

H
C₆H₁₁

$$C_6H_{11}$$
 $O$ 
H
C₆H₁₁
 $O$ 
H
C₆H₁₁
 $O$ 
H
C₆H₁₁
 $O$ 
MeO₂C
 $O$ 
191

# 8.2.8. cis-1-Cyclohexyl-6-methylene-3,5,6,6a-tetrahydro-1H-cyclopenta[c] furan-4-carboxylic Acid Methyl Ester(191) (57)

A flame-dried round-bottomed flask, equipped with a condenser, was charged with  $Pd_2(dba)_3$  [(1.9 mg, 0.0021 mmol, 3.6 mol% of Pd(0))] and  $P(OPr-i)_3$  (2.0  $\mu$ L, 0.0081 mmol, 7.4 mol%). Toluene (desulfurized and freshly distilled over sodium) was introduced via cannula followed by a solution of substrate **190** (30 mg, 0.11 mmol) in toluene. The mixture was heated to 110° for 1 hour with vigorous stirring. Toluene was removed under vacuum and the crude mixture was purified by column chromatography (EtOAc: hexane, 1:49) to afford the title product (22.6 mg, 75%) as a colorless oil. IR (neat) 2935, 2870, 1724, 1442 cm⁻¹; ¹H NMR (400 MHz, CDCl₃)  $\delta$  1.09-1.28 (m, 5 H), 1.54 (m, 1 H), 1.69 (t, J = 12.1 Hz, 3 H), 1.76 (m, 2 H), 1.87 (dd, J = 12.8, 1.8 Hz, 1 H), 3.44–3.49 (m, 2 H), 3.65 (ddd, J = 19.2, 4.2, 2.5 Hz, 1 H), 3.71 (s, 3 H), 3.74 (br d, J = 9.2 Hz, 1 H), 4.40 (dddd, J = 15.7, 4.4, 1.8 Hz, 1 H), 4.56 (ddd, J = 15.7, 4.4, 1.8 Hz, 1 H), 4.84 (m, 1 H), 4.93 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃)  $\delta$ 26.2, 26.6, 27.9, 30.2, 41.9, 44.4, 51.5, 57.8, 65.1, 84.7, 108.7, 122.7, 147.5, 164.1, 164.6. HRMS Calcd. for  $C_{16}H_{22}O_3$ : 262.1569. Found: 262.1567.

$$Me_3Si$$
 OAc +  $MeO_2C$   $Pd(OAc)_2/(i-PrO)_3P$   $H$   $CO_2Me$ 

# 8.2.9. $(4S,1 \notin R,2 \notin R)$ -2,2-Dimethyl-4-(2-carbomethoxy-4-methylenecyclope (2S4) (170)

To 160 mg (0.71 mg) of palladium acetate in 11 mL of dry toluene under nitrogen was added 726 mg (3.48 mmol) of triisopropyl phosphite, 2.00 g (10.7 mmol) of precursor 41, and 2.00 g (10.7 mmol) of methyl (S)-(+)-(E)-3-(2,2-dimethyl-1,3-dioxolan-4-yl) propenoate (253). The resulting solution was heated at 100° under nitrogen for 16 hours. After cooling, the solution was concentrated. Purification by flash chromatography (hexane:

Et₂O, 4:1) gave 2.26 g (87%) of the title product and its (1¢S,2¢S) diastereomer as a colorless liquid at room temperature which crystallized at –25°. IR (CDCl₃) 1730, 1650, 1430, 1375, 1365 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz)  $\delta$  1.28(s), 1.30 (s) [3 H overall], 1,34 (s), 1.36 (s) [3 H, overall], 2.76–2.21 (m, 6 H), 3.53 (m, 1 H), 3.65 (s), 3.66 (s) [3 H, overall], 4.16–3.90 (m, 2 H), 4.84 (br s, 2 H); ¹³C NMR (CDCl₃)  $\delta$  25.1, 25.3, 26.1, 26.4, 33.9, 34.7, 36.9, 45.4, 45.8, 46.7, 46.9, 51.5, 67.4, 67.6, 76.7, 78.3, 106.3, 106.5, 108.6, 108.9, 148.3, 175.1, 175.5. HRMS Calcd. for C₁₃H₂₀O₄: 240.1361. Found: 240.1361.

#### 8.2.10. 6-Methyl-7-methylenebicyclo[3.3.0]octan-2-one(320) (172)

To a solution of 0.25 mL (1.01 mmol) of triisopropyl phosphite in 2.5 mL of THF was added 38.1 mg (0.17 mmol) of palladium acetate. After the latter was completely dissolved, 0.20 mL (1.7 M solution in hexane, 0.34 mmol) of n-BuLi was added, and the solution was stirred for 5 minutes. The pale yellow solution was then treated with 0.38 g (4.63 mmol) of 2-cyclopentenone and 0.63 g (3.15 mmol) of 2-acetoxy-3-[(trimethylsilyl)methyl]-3-butene (200) and heated at 65° for 16 hours. The reaction mixture was concentrated by short-path distillation and the residue was purified by flash chromatography (pentane: Et₂O, 19:1). Concentration of the desired fractions followed by distillation (bulb-to-bulb, 2 mm Hg, 60–80°) yielded 224 mg (47%) of the title product as a 1:1 mixture of diastereomers.

**Exo isomer**: IR (neat) 3080, 2978, 1742, 1662, 1462, 1412, 1263, 1130, 883 cm⁻¹; ¹H NMR (CDCl₃)  $\delta$  1.12 (d, J = 6.8 Hz, 3 H), 1.85 (m, 1 H), 1.98 – 2.17 (m, 2 H), 2.30 (m, 1 H), 2.59–2.69 (m, 3 H), 4.76 (m, 1 H), 4.82 (m, 1 H); ¹³C NMR (CDCl₃)  $\delta$  17.0, 24.0, 34.0, 35.9, 43.4, 49.2, 50.5, 105.2, 155.5, 222.0. HRMS Calcd. for C₁₀H₁₄O: 105.1041. Found: 150.1041.

**Endo isomer**: IR (neat) 3080, 2976, 1745, 1662, 1465, 1417, 1130, 886 cm⁻¹; ¹H NMR (CDCl₃)  $\delta$  1.06 (d, J = 6.4 Hz, 3 H), 1.33 (m, 1 H), 1.86 (m, 1H), 2.18–2.34 (m, 3 H), 2.58–2.80 (m, 4 H), 4.76 (m, 1 H), 4.86 (m, 1 H); ¹³C NMR (CDCl₃)  $\delta$  12.1 (q), 21.9 (t), 34.6 (t), 38.9(t), 41.6(d), 45.8(m), 48.8 (m), 105.6(t), 153.3 (s), 221.4 (s). HRMS Calcd. for C₁₀H₁₄O : 105.1041. Found 150.1046.

### 8.2.11. 2-[(E)-2-Phenylethenyl]-4-methylenetetrahydrofuran(218) (159)

A solution of palladium acetate (5 mg, 22  $\mu$ mol), triphenylphosphine (30 mg, 114  $\mu$ mol), and tributyltin acetate (35 mg, 100  $\mu$ mol) under nitrogen in 1.0 mL of THF was heated at 70° until homogeneous. Cinnamaldehyde (66 mg, 63  $\mu$ L, 0.50 mmol) and precursor **41** (93 mg, 110  $\mu$ L, 0.50 mmol) were added and heating was continued at 70° for 4 hours. The reaction mixture was cooled, diluted with hexane: EtOAc, 4:1 (2 mL), and filtered through a silica gel plug. After evaporation of the solvent, the residue was purified by flash chromatography (hexane: EtOAc, 32.3:1) to give 83 mg (89%) of the title product. ¹H NMR (CDCl₃, 270 MHz)  $\delta$  2.45 (dd, J = 5.4, 7.4 Hz, 1 H), 2.77 (dd, J = 15.4, 6.9 Hz, 1 H), 4.32 (d, J = 13.0 Hz, 1 H), 4.46 (d, J = 13.0 Hz, 1 H), 4.57 (q, J = 7.1 Hz, 1 H), 4.94 (br s, 1 H), 5.02 (br s, 1 H), 6.22 (dd, J = 15.9, 6.9 Hz, 1 H), 6.62 (d, J = 15.9 Hz, 1 H), 7.40–7.20 (m, 5 H).

#### 8.2.12. (+)-Dimethyl

# 3,8-Dimethyl-4-oxo-4,5,6,7,8,8a-hexahydro-2H-azulene-1,1-dicarboxylate(321) (167)

To a suspension of the (+)-isomer of precursor **272** (1.98 g, 4.68 mmol), trimethyltin acetate (51.6 mg, 0.232 mmol), and powdered 3 Å molecular sieves (0.40 g) in 40 mL of toluene was added a catalyst solution consisting of palladium acetate (26.0 mg, 0.116 mmol) and triisopropyl phosphite (145 mg, 0.694 mmol) in 5 mL of toluene. The mixture was heated at reflux for 3 hours, the bath temperature was changed to 90°, and DBU (0.176 g, 1.16 mmol) was added. After 2 hours at 90°, the mixture was filtered through Celite (with 50 mL of Et₂O). The filtrate was partitioned with aqueous 2% sodium bisulfate

solution (50 mL). The organic layers were washed with phosphate buffer (pH 7; 25 mL) and brine (25 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification by silica gel flash chromatography (hexane: EtOAc 4:1) afforded 0.979 g (71%) of the title product as an oil. [  $\alpha$  ]_D + 67.58° (c 7.6, CHCl₃); IR (neat) 1733 (vs), 1683 (m), 1627 (m), 1435 (m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃  $\delta$  1.01 (d, J = 7.0 Hz, 3 H), 1.44 (dq, J = 10.2, 4.3 Hz, 1 H), 1.57–1.72 (m, 2 H), 1.80–2.00 (m, 2 H), 2.10 (s, 3 H), 2.35 (ddd, J = 12.8, 7.8, 2.1 Hz, 1 H), 2.72 (dt, J = 12.8, 9.5 Hz, 1 H), 2.87 (d, J = 18.6 Hz, 1 H), 3.39 (d, J = 18.6 Hz, 1 H), 3.67 (d, J = 8.5 Hz, 1 H), 3.74 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃)  $\delta$  16.2, 18.5, 19.4, 30.9, 31.2, 41.4, 46.3, 52.5, 53.0, 56.7, 62.6, 136.0, 149.7, 170.5, 172.3, 200.6. HRMS Calcd. for C₁₆H₂₂O₅ (M⁺): 294.1467. Found: 294.1473. Anal. Calcd. for C₁₆H₂₂O₅: C, 65.29; H, 7.53. Found: C, 65.06; H, 7.65.

### 9. Tabular Survey

The tabular survey includes all examples found in the literature to the end of 2000. The contents of the tables were derived by searching *Chemical Abstracts* and by direct inspection of the literature.

Table entries are in order of increasing carbon number of the reactant, in order of increasing hydrogen number of the reactant when reactants have the same carbon number, and then in order of increasing carbon number of the product.

The following abbreviations are used in the tables:

Ac acetyl

acac acetylacetonato

an acrylonitrile

BINAP 2,2' -bis(diphenylphosphino)-1,1' - binaphthyl

Boc *N-tert*-butoxycarbonyl

BP biphenyl

BSA N, O-bis(trimethylsilyl) acetamide

Cp cyclopentadienyl

Chiraphos bis(diphenylphosphino)butane

cod cyclooctadiene

DCA 9,10-dicyanoanthracene
DIBAL-H diisobutylaluminium hydride

DME 1,2-dimethoxyethane
DMF N, N-dimethylformamide

DMSO dimethyl sulfoxide

dba dibenzylideneacetone

dppe 1,2-bis(diphenylphosphino)ethane

dppf 1,1 -bis(diphenylphosphino)ferrocene

dppp 1,3-bis(diphenylphosphino)propane

MeCN acetonitrile

MOM methoxymethyl
MS molecular sieves

NMQ⁺BF₄⁻ N-methylquinolinium tetrafluoroborate

Piv pivaloyl

TBDMS *tert*-butyldimethylsilyl TBDPS *tert*-butyldiphenylsilyl

TCNB TIPS Tpdp xs	1,2,4,5-tetracyanobenzene triisopropylsilyl 2,4-bis[(4,6-dimethyl-1,3,2-dioxaphosphorinan-2-yl)oxy]pentane excess
Table 1	. Intermolecular Cycloaddition of Acyclic Alkenes and TMM
_	View PDF
Table	2. Intermolecular Cycloaddition of Cyclic Alkenes and TMM  View PDF
Table 3.	Intermolecular Cycloaddition of Alkynes or Allenes and TMM  View PDF
Tal	ole 4. Intramolecular Cycloaddition of Alkenes and TMM  View PDF
Tal	ole 5. Intramolecular Cycloaddition of Alkynes and TMM

## View PDF

	View PDF
able 7. Int	ramolecular Cycloaddition of Aldehydes and
	View PDF
e 8. Interm	olecular Cycloaddition of Imines or Oximes a
e 8. Interm	olecular Cycloaddition of Imines or Oximes a
e 8. Interm	
e 8. Interm	
	View PDF
	View PDF  Itermolecular Cycloaddition of Oxygen and T
	View PDF  Itermolecular Cycloaddition of Oxygen and T

Reactant	TMM Precursor	Conditions	ITION OF ACYCLIC ALKENES AND TMM  Product(s) and Yield(s) (%)	Refs.
CI_CI	N N N N N N N N N N N N N N N N N N N	Alkene (xs), 40-60°	$I + \bigcup_{CI} CI \qquad I + II (10), I:II = 1:1$	8
CH ₂ =CH ₂	$\bot$	Pd(acac) ₂ /Et ₂ Al(OEt)/ i-Pr ₃ P, C ₆ H ₆ , 115°, 6 h	I + II (84), I:II = 1:2	124, 22
	I	Ni(0), 40-60°	I (>75)	235
	X	Pd(0), 80-100°	1 (>75)	235
	Ph Ph	Ni(0), 40-60°	Ph Ph I (>75)	235
	Ph	Pd(allyl)Cp/i-Pr ₃ P (1:1), 100°, 5 h	I (83)	64
	Ph	Pd(allyl)Cp/i-Pr ₃ P (1:1), 100°, 8 h	Ph Ph (77)	64
CN		Ni(cod) ₂ /Ar ₃ P (1:1), toluene, 130°, 10 h	I (47) + II (4)	65
	MeQ OMe	Et ₂ O, 0°	MeQ_OMe (—)	44
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, toluene, 60°, 150 h	(35)	25, 154
	F	MeCN, 70°, 6 h	F	51
			III F II + III + III = (75), I:II:III = 3.8:1:1	

TABLE 1. INTERMOLECULAR CYCLOADDITION OF ACYCLIC ALKENES AND TMM (Continued)

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	Ph_Ph	Ni(cod) ₂ /Ar ₃ P (1:1), toluene, 120°, 5 h	Ph Ph (82)	65
$= \stackrel{NO_2}{\leftarrow}$	×	MeCN, 70°, 1.5 h	$NO_2$ I + $NO_2$ II  I + II (84), I:II = 1:2.2	55
	t-Bu	MeCN, 120°, 2 h	I + II (42), I:II = 1:10	55
=\	Ph	Pd(allyl)Cp/i-Pr ₃ P (1:1), 100°, 6 h	Ph Ph (56)	64
$=_{\mathbb{R}}$	Ph	Pd(allyl)Cp/i-Pr ₃ P (1:1), 100°, 6 h	Ph R R (83) Et (86)	64
NC CN	N N	Alkene xs, 40-60°	NC CN (83)	8
	D N	MeCN, 50°	D ₃ , (>90)	41
CN	×	MeCN, 80°, 39 h	O CN (85)	16
$\bot$	$\bot$	Pd(dba) ₂ / <i>i</i> -Pr ₃ P (1:1), C ₆ H ₆ , 115°, 16 h	I (91)	124
		Pd(acac) ₂ /Et ₂ Al(OEt)/ i-Pr ₃ P (1:2:1), C ₆ H ₆ , 100°, 4 h	I (94)	22
	$\blacksquare$	Pd(PPh ₃ ) ₄	I (4)	22
=_	Ph	Pd(allyl)Cp/i-Pr ₃ P (1:1), 120°, 8 h	Ph (48)	64

TABLE 1. INTERMOLECULAR CYCLOADDITION OF ACYCLIC ALKENES AND TMM (Continued)

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
=>=0	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, toluene, 78°, 42 h	(30)	25, 69
	Ts OCO ₂ Et	[Pd ₂ dba ₃ CHCl ₃ ], dppe, THF, reflux, 1 h	Ts (89)	70
	SiMe ₃ Me ₃ Si OCO ₂ Mc	(Ph ₃ P) ₄ Pd, toluene, 80°	HO ₂ C $I + HO_2$ C $II$	155
Сно		Ni(cod) ₂ /Ph ₃ P (1:1), toluene, 80-100°, 5 h	CHO I + II (54), I:II = 10:1	60
D _x	Į.	Ni(an) ₂ , 60°, 48 h	D (70)	62
$CO_2Me$ $R$ $CO_2Me$ $R = H$ $R = Me$ $R = Ph$		Pd(dba) ₂ /( <i>i</i> -Pr) ₂ ( <i>t</i> -Bu)P, (1:1), 110°, 3 h	I + II (81), I:II = 3:1  I + II (81), I:II = 3:1	126
C ₄ = C _{O₂Me}	$\bot$	Ni(an) ₂ , 60°, 48 h	I (82)	63
		Ni(cod) ₂ , -15° Ni(cod) ₂ /Ph ₃ P (1:1),	I (>90) I (55)	126 60
	190	toluene, 80-100°, 5 h Pd(dba) ₂ / <i>i</i> -Pr ₃ P (1:1),	I (18)	60
	4	100°, 20 h Pd(acac) ₂ /Et ₂ Al(OEt)/ <i>i</i> -Pr ₃ 100°, 2 h	P,I (14)	61
	<b>19</b> .5	Pd(allyl)Cp/i-Pr ₃ P (1:1), 130°, 2.5 h	I (84)	22
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, toluene, 85-90°, 43 h	I (68)	25, 69
		Ni(cod) ₂	(33–43) CO ₂ Me	129
	I	Ni(an) ₂	$I$ (61) + $CO_2Me$ $II$ (0)	63
	I	Ni(cod) ₂ /Ar ₃ P (1:1), toluene, 100°, 5 h	I (81) + Π (14)	65

TABLE 1. INTERMOLECULAR CYCLOADDITION OF ACYCLIC ALKENES AND TMM (Continued)

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	Ph	Ni(cod)/Ar ₃ P (1:1), toluene, 50°, 8 h	Ph Ph (79) CO ₂ Me	65
= _R	EtO ₂ CO SO ₂ Ph	[Pd ₂ (dba) ₃ CHCl ₃ ]/ ligand (1:2), THF, reflux, 38-64 h	SO ₂ Ph I + SO ₂ Ph II	158
R CO ₂ Me COMe CO ₂ Me COMe		$ \begin{array}{c c}  & \text{Iigand} \\  & \text{H} & \text{X} = \text{N(M)} \\  & \text{X} & \text{PPh}_2 & \text{X} = \text{NM}_{\text{C}} \end{array} $	He)CH(CH ₂ OH) ₂ (58)     4.6:1     73     58       (77)     1.9:1     75     78       (e ₂ (76)     3.3:1     66     64       (86)     2.6:1     54     61	
CO ₂ Me		(S,S)-chiraphos (+)-BINAP	(51) 2.7:1 46 21 (63) 3.5:1 19 4	
MeS NO ₂	×	MeCN, 50°, 24 h	NO ₂ SMe SMe MeS NO ₂ I + II (68), I:II = 1:4.9	55
C ₄₋₆ R CO ₂ Me	Me ₃ Sí	Pd(allyl)Cp/i-Pr ₃ P (1:1), 144°, 2-5 h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	125
			R I:II:III  H (78) 1.1:1:0  Me (79) 1.3:1:0  CO ₂ Me (87) 9:0:1	
CO₂Me	×	MeCN, 80°, 18 h	CO ₂ Me (91)	16
	Š	Toluene, 100-120°, 55-75 h	$E = CO_2Me$ $I + II (72), I:II = 1:1$	56
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, toluene, 85°, 67 h	(50) CO ₂ Me	25, 69
CO ₂ Me	$\bot$	Pd(dba) ₂ /i-Pr ₃ P (1:1), toluene, 100°, 16 h	I (43) + CO ₂ Me II (7)	61, 22

TABLE 1. INTERMOLECULAR CYCLOADDITION OF ACYCLIC ALKENES AND TMM (Continued)

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	$\bot$	Ni(cod) ₂	I (43) + CO ₂ Me Π (0)	129
	$\bot$	Ni(cod) ₂ /Ph ₃ P (1:1), toluene, 80-100°, 5 h	I + II (55), I:II = 3.5:1	60
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, toluene, 110°, 60 h	I + CO ₂ Me  I + II (38), I:II = 13:1	25, 69
	I	Ni(cod) ₂ /Ar ₃ P (1:1), toluene, 110°, 5 h	I (14) + CO ₂ Me II (46)	65
	X	Toluene, 100-120°, 55-75 h	$E = CO_2Me$ $I + II (81), I:II = 1:1$	56
	X	CD ₃ CN, 100-120°, 55-75 h	$E = CO_2Me$ $I + II (71), I:II = 24:1$	56
	Ph	Ni(cod) ₂ /Ar ₃ P (1:1), toluene, 120°, 5 h	Ph Ph (75)	65
∕=_ _{CO₂Me}	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, THF, reflux, 5.5 h	I + II (35), I:II = 1:1.6	25, 69
MeO	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, THF, reflux	MeO (33)	69
	SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	HO ₂ C $I + HO_2C$ $II$ MeO $I + II$ (40), $I : II = 1:3.2$	155

TABLE 1. INTERMOLECULAR CYCLOADDITION OF ACYCLIC ALKENES AND TMM (Continued)

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
— _{CO₂Et}	NC OCO ₂ Et	[Pd ₂ (dba) ₃ CHCl ₃ ]/ dppe (1:4), THF, reflux, 2 h	(66) CO ₂ Et	70
	NC OCO ₂ Et	[Pd ₂ (dba) ₃ CHCl ₃ ]/ dppe (1:4), THF, reflux, 20 h	(72) CO ₂ Et	70
	Ts OCO ₂ Et	[Pd ₂ (dba) ₃ CHCl ₃ ]/ dppe (1:4), THF, reflux, 20 h	(77) CO ₂ Et	70
C ₆ NC CN  NC CN	s\sigma^s	MeCN 120°, 15 min hv, 0°, 12 h	S CN CN CN (98) (85)	107
	Z, z		CN I + CN II +	236
		hv (> 400 nm), CD ₂ Cl ₂ , 0-5°, 10 m hv, CDCl ₃ /CD ₃ CN (97/3), 0-5°, 10 hv, CDCl ₃ /CD ₃ CN (95/5), 0-5°, 10 hv, CDCl ₃ /CD ₃ CN (75/25), 0-5°, 1 hv, CDCl ₃ /CD ₃ CN (50/50), 0-5°, 1 hv, CDCl ₃ /CD ₃ CN (25/75), 0-5°, 1 hv, CD ₃ CN, 0-5°, 10 min hv, LiClO ₄ , CD ₃ CN, 0-5°, 10 min CD ₃ CN, 60°, 6 h CDCl ₃ /CD ₃ CN (95/5), 40°, 24 h	0 min (5) (2) (39) 0 min (8) (2) (30) 10 min (17) (6) (53) 10 min (19) (6) (29) 10 min (31) (6) (23) (26) (5) (8)	
	Fe(CO) ₃	Ce ⁴⁺ NC		78
	Phr	Pł C ₆ H ₆ , 100°, 5 d NC- NC	CN I + Ph II	237
	Ph Ph	Pi C ₆ H ₆ , 100°, 3 d NC- NC	I + Ph II	237

TABLE 1. INTERMOLECULAR CYCLOADDITION OF ACYCLIC ALKENES AND TMM (Continued)

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
		07 (1002 (1002)		1.05,083
	MeO ₂ C _ CO ₂ Me		MeO ₂ C CO ₂ Me	
		_	CN (-)	81
	Pd Pd		CN	
	Ph ₃ P PPh ₃		CN	
=	17		1 1 1	
		Ni(cod) ₂ , toluene, 40°	+ + + + + + + + + + + + + + + + + + + +	131
CO₂Me	$\triangle$		CO ₂ Me	
			CO₂Me	
MeO ₂ C	ı		Ŭ CO₂Me	
	$\downarrow$	Ni(an) ₂	CO ₂ Me + +	62
CO ₂ Me	$\Delta$		CO ₂ Me MeO ₂ C CO ₂ Me CO ₂ Me	
			т ш	
			I + II + III (27), I:II:III = 1.4:2.1:1	10.00
	•	Pd(dba) ₂ /i-Pr ₃ P (1:1), toluene, 100°, 16 h	I (76) + II (2)	61
	<u> </u>	Pd(dba) ₂ /Et ₂ Al(OEt)/	I (19) + II (1)	22
		i-Pr ₃ P, (1:2:1), THF,	1 2 1 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.50
		100°, 16 h		
		Pd(acac) ₂ /Et ₂ Al(OEt)/	I(59) + II(2)	22
		i-Pr ₃ P (1:2:1), toluene, 100°, 16 h		
		Pd(allyl)Cp/i-Pr ₃ P (1:1),	I (84) + II (3)	22
		toluene, 120°, 2 h		
	1	CONTROL OF THE CONTROL		manamasan
	[ ].	(Ph ₃ P) ₄ Pd/dppe, THF, reflux, 285 h	П (32)	25, 69
	Me ₃ Si OAc	THE, Tellux, 205 II		
			CD _{0.08} CD _{1.33}	
	ļ.	Ni(an)2,	D ₋₂ CO ₂ Me I + D _{1.34} D _{1.34} II	238
	$D_2 \stackrel{\triangle}{\longrightarrow} D_2$	benzene, 60°, 2.5 h	D-2 —	
			$CO_2Me$ $MeO_2C$ $CO_2Me$ I:II = 1:1.6	
			× "	
	$\checkmark$			207
	Į.	Ni(cod) ₂ /Ar ₃ P (1:1)	I (56) + II (34)	65
		toluene, 120°, 5 h	MeO ₂ C CO ₂ Me MeO ₂ C CO ₂ Me	
			N   9	
	<b>\</b>			
	¥		1+ E II+ M	8, 39
	N		TH E	
	N		E E E CO ₂ Me E E cis isomer	
			$E = CO_2Me$ cis isomer	
Concentration (M	<u>)</u>	500.01	<u>I + II + III                          </u>	
6.6 0.515		60°, 8 h MeCN, 60°	(100) 9:1:0 (100) 89:10:1	
0.204		MeCN, 60°	(100) 81:18:1	
0.0725		MeCN, 60°	() 17:7.5:1	
0.035		MeCN, 60°	() 9.5:6.2:1	
0.017 0.007		MeCN, 60° MeCN, 60°	(99) 7.4:5.9:1 (96) 6.9:6.4:1	
0.298		MeCN, 60°, O ₂ (250 Torr)	(62) 99:1:0	
0.224		MeCN, 60°, O ₂ (250 Torr)	(56) 99:1:0	
0.149		MeCN, 60°, O ₂ (250 Torr)	(45) 99:1:0	
0.075		MeCN, 60°, O ₂ (250 Torr)	(29) 99:1:0	
0.037		MeCN, 60°, O ₂ (250 Torr)	(18) 99:1:0	

TABLE 1. INTERMOLECULAR CYCLOADDITION OF ACYCLIC ALKENES AND TMM (Continued)

the same and same as		Acces of the expension of the	OF ACYCLIC ALKENES AND 1 MM (Continued)	Dafa
Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	SS	MeCN, 120°, 36 h	$CO_2Me$ $CO_2Me$ $I + II$ $CO_2Me$ $I + III (59), I: II = 1:1.7$	107
	Ph	Ni(cod) ₂ /Ar ₃ P (1:1), toluene, 100°, 3 h	(98) MeO ₂ C CO ₂ Me	65
MeO ₂ C CO ₂ Me	<u>L</u>	Ni(an) ₂	CO ₂ Me I + CO ₂ Me II + IV  CO ₂ Me MeO ₂ C CO ₂ Me MeO ₂ C CO ₂ Me  I + II + III + IV (20), I:II:III:IV = 1:89:4:6	62
	(m)	Ni(cod) ₂	I + II (78), I:II = 1:9	129
	(10)	Pd(dba) ₂ /i-Pr ₃ P (1:1),	III (8) + IV (15)	61
	Wes	toluene, 100°, 16 h Pd(acac) ₂ /Et ₂ Al(OEt)/ i-Pr ₃ P (1:2:1), toluene, 100°, 16 h	III (18) + IV (13)	22
	•	Pd(allyl)Cp/i-Pr ₃ P (1:1),	III (25) + IV (20)	22
		toluene, 110°, 8 h		
	:"	Pd(allyl)Cp/(EtO) ₃ P (1:1), toluene, 110°, 8 h	III (61) + IV (18)	22
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, THF, reflux, 210 h	III + IV (60), III:IV = 1.3:1	25, 69
	J.	MeCN, 60°	H H H H H H H H H H H H H H H H H H H	8, 39
			CO ₂ Me III + CO ₂ Me IV H H CO ₂ Me CO ₂ Me	
Concentration (M)		29	I + II + III + IV I:II:III:IV	
6.6		8 h	(95) 15:3:1:6	
3.3			(95) 37(I + II):1:13 (93) 15 (I + II):1:9.3	
1.32 0.66		<del>5</del>	(86) 13 (I + II):1:11	
0.33		_	(59) $7.5 (I + II):1:8.2$	
0.13		-	(38) $7.2 (I + II):1:8.5$	
0.066		<u> </u>	(24) 9 (I + II):1:10	
0.033		-	(12) 7.2 (I + II):1:8.5	
6.6		O ₂ (250 Torr)	(54) 96:2:1:1	
3.3		O ₂ (250 Torr)	(32) 95:2:2:1	
1.3		O ₂ (250 Torr)	(17) 45:2:1:2.5	
0.66		O ₂ (250 Torr)	(15) 21:1:1:—	

Reactant	TMM Precursor	Conditions	ON OF ACYCLIC ALKENES AND TMM (Continued) Product(s) and Yield(s) (%)	Refs
Reactant	I MM Precursor	Conditions	Product(s) and Tield(s) (%)	Kei
	X	Ni(cod) ₂ /Ar ₃ P (1:1), toluene, 130°, 10 h	$I$ (57) + $I$ (23) $MeO_2C$ $CO_2Me$	65
	s\s\s	MeCN, 120°, 72 h	$CO_2Me$ $I + II (46), I: II = 1:1.1$	107
	Med_OMe	Et ₂ O, 0°	MeQOMe (—)  CO ₂ Me  CO ₂ Me	44
	Ph	Ni(cod) ₂ /Ar ₃ P (1:1), toluene, 120°, 5 h	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65
	\$	80°, 20-35 h	$\begin{array}{c c}  & CO_2Me \\  & CO_2Me \end{array}$	56
<b>2</b> 7	<b>\</b> /	solvent octane benzene toluene DME (CH ₂ Cl) ₂ DMF MeCN DMSO-d ₆	I + II     I:II       (77)     32:1       (88)     19:1       (86)     32:1       (85)     12:1       (75)     12:1       (72)     4:1       (78)     4:1       (73)     2.7:1	
MeO CO ₂ Me	S	MeCN 80°, 12 h 40°, 60 h	CO ₂ Me CO ₂ Me I + II (84), I:II = 1:1.6 I + II (87), I:II = 1:3.2	55
MeO ₂ C CONMe ₂	Me ₃ Si OAc	Pd(OAc) ₂ /( <i>i</i> -Pr) ₃ P, THF, reflux, 142 h	MeO ₂ C CONMe ₂	72
EtQ_NO ₂ CO ₂ Et	X	MeCN, 40°, 30 h	EtO NO ₂ (90)	55
7-8 RCO₂Me	L	Ni(cod) ₂ /Ph ₃ P (1:1), toluene, 80-100°, 5 h	$CO_2Me$ I + $CO_2Me$ II	76
R = n-Pr			I + II (50), I:II = 2.7:1	

	Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs
8	$=_{Ph}$	I	Ni(0), 40-60°	I (>75)	235
		$\overline{\mathbf{X}}$	Pd(0), 80-100°	I (>75)	235
		Ph	Ni(0), 40-60°	Ph Ph I (>75)	235, 64
		Ph	Pd(allyl)(Cp)/i-Pr ₃ P (1:1), 90°, 1.5 h	I (88)	235, 64
	$=_{SO_2Ph}$	L	Alkene (4 eq), MeCN, reflux	$I + PhO_2S$ $I + II (85)$	239
		OMe H C ₇ H ₁₅ -n	<ol> <li>Ni(cod)₂/(PhO)₃P (1:2), toluene, reflux, 6 h</li> <li>Na/Hg, Na₂HPO₄, MeOH, 0°</li> </ol>	OMe $C_7H_{15}$ - $n$ $I + II (49), I:II = 10:1$	240
	MeO ₂ C	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe  Dioxane  THF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150, 69
	MeO ₂ C	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, dioxane, reflux	$\begin{array}{c} Ph \\ I \\ CO_2Me \\ I:II = 1:1 \end{array}$	150
		Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P (1:8)	(93)	160
	EtO ₂ C CO ₂ Et	$\bot$	Ni(cod) ₂ /Ph ₃ P (1:1), toluene, 80-100°, 5 h	$I + II$ $EtO_2C CO_2Et EtO_2C CO_2Et$ $I + II (72), I:II = 24:1$	60
	EtO ₂ C CO ₂ Et	$\bot$	Ni(cod) ₂ /Ph ₃ P (1:1), toluene, 80-100°, 5 h	$I + \prod_{EtO_2C} CO_2Et \qquad EtO_2C \qquad CO_2Et$ $I + \prod (42), I:\Pi = 3:1$	60

TABLE 1. INTERMOLECULAR CYCLOADDITION OF ACYCLIC ALKENES AND TMM (Continued)

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
		Ni(cod) ₂ / (2-PhC ₆ H ₄ ) ₃ P (x:y)	$I + \underbrace{ElO_2C} CO_2Et \qquad ElO_2C CO_2Et$ $CO_2Et \qquad III$ $CO_2Et \qquad III$	126
	-	x:y 1:1 1:2 1:3	EtO ₂ C $CO_2$ Et  I (10) + II (31) + III (16) I (12) + II (46) + III (18) I (25) + II (23) + III (9)	
	X	Pd(dba) ₂ /(i-Pr) ₂ (t-Bu)P ( 110°, 3 h	1:1), I (83)	126
	Fe(CO) ₃	Me ₃ NO, benzene, 60°	$CO_2Et$ $CO_2Et$ $CO_2Et$ $CO_2Et$ $CO_2Et$ $CO_2Et$	79
			$CO_2Et$ III $I + III = (9-19)$	
n-BuCO ₂ Me	X	MeCN, 70°, 26 h	$ \begin{array}{c} O \\ O \\ Bu-n \end{array} $ (89)	16
r-BuCO ₂ Me	X	CD ₃ CN, 100-120°, 55-75 h	$CO_2Me$ $Bu-t$ (89)	56
n-BuCO ₂ Me	×	MeCN, 70°, 26 h	$ \begin{array}{c} O \\ O \\ Bu-n \end{array} $ (86)	16
	X	CD ₃ CN, 100-120°, 55-75 h	Bu-n  Bu-n	56
			$I + II (80), I:II = 1:1, E = CO_2Me$	

-				N OF ACYCLIC ALKENES AND TMM (Continued)	
_	Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
C9	CO ₂ Me	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P. hexane. reflux	I + II (94), I:II = 3:1	76. 170
		SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene. 80°	HO ₂ C $H$ $E$ $H$	154, 155
	CO ₂ Me	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd, toluene, 80°	H CO ₂ Me (69)	77
		SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	HO ₂ C H CO ₂ Me (66)	154, 155
C ₁₀	Ph CN CN	EtO_OEt	MeCN, 40°, 14 h	EtO $CN$ $I + OEt$ $OEt$ $I + II (94), I:II = 1:6.7$	55
		×	MeCN 80°, 0.5 h	$ \begin{array}{c} CN \\ CN \\ Ph \\ \end{array} $ $ \begin{array}{c} II \\ Ph \\ CN \\ \end{array} $ $ \begin{array}{c} II \\ II \\ III $ III   I	55
		s\sigma^s	40°, 14 h MeCN, 120°, 23 h	I + II (87), I:II = 1:8.1  CN CN I + Ph CN I + II (80); I: II = 1:1.2	107
		t-Bu	MeCN, 120°, 4 h	$\begin{array}{c} CN \\ CN \\ CN \\ I + II \end{array}$ $\begin{array}{c} I + II \end{array} (72), I:II = 1:5.7$	55
	Ph	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, THF, reflux, 5 h	PH (72), EH = 1:5.7	25, 69

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Si OPiv	Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P, toluene	PH PH II	153
	Me ₃ Si OPiv	(η ³ -C ₃ H ₅ PdCl) ₂ /tpdp, toluene, benzene, 15 kbar	I + II (38), I:II = 3:1 I + II (90), I:II = 1:3.6	153
	NC OCO₂Eι	[Pd ₂ (dba) ₃ CHCl ₃ ]/ dppe (1:4), THF, reflux. 1 h	NC (51)	
	SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	HO ₂ C I + HO ₂ C II	155
PhCO ₂ Me	L	Pd(0)/i-Pr ₃ P (1:1), 100-140°	I + II (61), I:II = 2.7:1  Ph CO ₂ Me  (40)	61
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, THF, reflux, 4.5 h	1 (70)	25, 69
	Me ₃ Si OPiv	(i-PrO ₃ P) ₄ Pd, dioxane, 150°	I + II (74), I:II = 2.3:1  Ph CO ₂ Me Ph CO ₂ Me	241
Ph CO ₂ Me	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, THF, reflux, 3 h	$I + II (55), I:II = 1:1.3$ Ph $CO_2Me$ Ph $CO_2Me$	25, 69
CO ₂ Me	SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	HO ₂ C. $CO_2$ Me I + $CO_2$ Me II	154, 155
n-C ₆ H ₁₃	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, THF, reflux, 12 h	$I + \Pi$ (70), $I:H = 1.4:1$ $n-C_0H_{13}   CO_2Me$	25, 69
H.	Me ₃ Si OAc	-	(64)	76

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₂ O(CH ₂ ) ₂ Ph	Me ₃ Si OAc	Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P, <i>n</i> -BuLi, THF, 65-70°	I + II (95), I:II = 19:1	71
	(MeO) ₃ Si Cl	Pd(OAc) ₂ /(i-PrO) ₃ P, n-BuLi, THF, 25°	I + II (59), I:II = >99:<1	71
$O(CH_2)_2Ph$	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, n-BuLi, THF, 65-70°	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	71
	(MeO) ₃ Si Cl	Pd(OAc) ₂ /(i-PrO) ₃ P, n-BuLi, THF, 25°	I + II (57), I:II = 1:7.3	71
MeO	SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	HO ₂ C	154, 155
			I + II (51), I:II = 2:1	
Ph CO ₂ Me	Me ₃ Si X X = OMs	$[(EtO)_3P]_2Ni,$	Ph CO ₂ Me (87)	88
	X = OAc	toluene, reflux (Ph ₃ P) ₄ Pd/dppe,	(70)	25, 69
	X = OBz	toluene, 85-95°, 5 h	(69)	25, 69
	X = OMs X = Br	:# : :# :	(42) (0)	25, 69 25, 69
	Me ₃ Si OAc	Pd(PPh ₃ ) ₄ , THF, reflux	I + II (82), I:II = 3.3:1	75, 153
	Me ₃ Si OAc	Pd(OAc) ₂ /(i-Pr) ₃ P, toluene, 10 kbar	П (90)	75, 153
	Me ₃ Si OAc	Pd(PPh ₃ ) ₄ , THF, reflux	I + II (90), I:II = 6.7:1	75, 153

	TABLE 1. INTERMOLEC	CULAR CYCLOADDITION	OF ACYCLIC ALKENES AND TMM (Continued)	
Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Si OPiv	Pd(OAc) ₂ (i-PrO) ₃ P, toluene, 100°  (i-PrO) ₃ P, dioxane, 150°	I + II (43), I:II = 1:3.1 I + II (95), I:II = 1:1	242
		tpdp, DMSO, 100°	I + II (quant.), I:II = 9.3:1	
		tpdp, neat 100°	I + II (81), I:II = 18:1	
	Me ₃ Si OCO ₂ Mc	Pd(OAc) ₂ /(i-Pr) ₃ P, toluene, 80°	Ph CO ₂ Me	241
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd, toluene, reflux	NC (89) Ph CO ₂ Me	75
	Me ₃ Si OAc	Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P, dioxane, 100°	Ph CO ₂ Me CO ₂ Me ACO	75
	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P	AcOn Ph E I + Ph E II + Ph E E	75, 153
		dioxane, 1 atm	$I + II + III (86), I:II:III = 1:0:0, E = CO_2Me$	
		toluene, 10 kbar	I + II + III (69), I:II:III = 0:4:1	
	Me ₃ Si OAc  SiMe ₃	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, reflux	Ph CO ₂ Me (59)  Me ₃ Si  SiMe ₃	75
		Pd(OAc) ₂ /ligand, reductant, dioxane, 100°	I + CO ₂ Me	155
	Me ₃ Si OAc	(i-PrO ₃ )P, n-BuLi Ph ₃ P, n-BuLi Ph ₃ P, DIBAL-H Ph ₃ P	Ph CO ₂ Me  Ph CO ₂ Me  Ph CO ₂ Me  III + CO ₂ Me  Ph CO ₂ Me  IV  CO ₂ Me  I + II + III + IV (62), I:II:III:IV = 1:0:1.4:1.4  I + II + III + IV (62), I:II:III:IV = 4:1:20:20  I + II + III + IV (—), I:II:III:IV = 4:1:20:4	
	Me ₃ Si OCO ₂ Me	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, reflux	4-MeOC ₆ H ₄ , (92) Ph CO ₂ Me	182
	PhS Me ₃ Si OCO ₂ Me	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 65-95°	PhS CO ₂ Me (85)	162

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	SiMe ₃ OCO ₂ Me	Pd(OAc) ₂ , <i>n</i> -BuLi, Ph ₃ P, THF, reflux	CO ₂ Me CO ₂ Me CO ₂ Me Ph  I + II (86), I:II = 4:1	73
No.	SiMe ₃ .OCO ₂ Me	Pd(OAc) ₂ , n-BuLi, Ph ₃ P, THF, reflux	CO ₂ Me CO ₂ Me CO ₂ Me Ph I:II = 2.3:1	73
C ₁₃	Me ₃ Si OAc	(2,4-pentadionato) ₃ In, Pd(OAc) ₂ , DIBAL-H, (2-MeOC ₆ H ₄ ) ₃ P, toluene	O (81)	160
2-MeOC ₆ H ₄ CO ₂ Me	SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	HO ₂ C. $I + HO_2C$ $CO_2Me$ 2-MeOC ₆ H ₄ CO ₂ Me $I + II$ (59), $I:II = 1.9:1$	155
MeO CO ₂ Me	×	MeCN, 60°, 0.1 h	CO ₂ Me CO ₂ Bn $I + II (8)$ , I: II = 1:2.4, II cis:II trans = 1:2.4	55
	S	MeCN, 80°, 9.5 h	I + II (96), I: II = 1:2.7, II $cis$ :II $trans = 1:1.6$	55
CO ₂ Me CO ₂ Bn	×	MeCN, 80°, 6.5 h	$CO_2Bn$ $CO_2Me$ $I + II$ $OMe$ $I + II (97), I:II = 1:2.3, II cis:II trans = 1.5:1$	55
o SO₂Ph	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 80°	I + II (80), I:II = 2:1	148
	SiMe ₃ Me ₃ Si OCO ₂ Me	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, 80°, 5 h	HO ₂ C HO ₂ C I + HO ₂ C SO ₂ Ph II  I + II (41), I:II = 1.5:1	148

-	32.5			OF ACYCLIC ALKENES AND TMM (Continued)	Dafe
_	Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	SO ₂ Ph	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 50°, 10 h	I + II (79), I:II = 1.5:1	148
		II	toluene, 80°, 6 h n-BuLi, THF, 80°, 6 h toluene, 80°, 24 h	I + II (76), I:II = 1:1 $I + II (61), I:II = 1:2$ $I + II (80), I:II = 1:2$	
			Pd ₂ (dba) ₃ , CHCl ₃ , (i-PrO) ₃ l toluene, 80°, 6 h	P, $I + II (81), I:II = 1:1.3$	148
		Me₃Ši ÖAc	tolucile, 80 , 0 ii		
		SiMe ₃ Me ₃ Si OCO ₂ Me	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 80°, 6 h	HO ₂ C H- SO ₂ Ph (64)	148
	r-Bu Tol	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P (1:4), THF, reflux	$I + \Pi$ (82), $I:\Pi = 4.6:1$	156
C ₁₃₋₁₉	=\cor	4	Ni(cod) ₂	COR	133, 134
	$R = 0$ $S$ $V_{A_{i}}$ $N$		0°, 20 h -10°, 120 h	(86), 99:1 >99:1	
	$R = \frac{Ph}{Ph}$		20°, 14 h	(55), 3.4:1	
	R = O Ph		20°, 20 h	(63), 1.6:1	
C ₁₃₋₂₅	=_cor	$\bot$	Ni(cod) ₂	COR	245, 134
	R = O R	$R^1 = H$ $R^1 = CHPh_2$ $R^1 = CHPh_2$ $R^1 = CHPh_2$ $R^1 = NPh(SO_2Ph)$ $R^1 = NPh(SO_2Ph)$ $R^1 = NPh(SO_2Ph)$	25°, 7 h 20°, 24 h 0°, 24 h -20°, 24 h 20°, 48 h 0°, 48 h -20°, 72 h	(92) 1.1:1 (91) 5.6:1 (86) 6.7:1 (93) 9.1:1 (73) 2.2:1 (60) 5.1:1 (38) 5.3:1	
	R = R1	$R^{1} = CH_{2}Ph$ $R^{1} = CH_{2}Ph$ $R^{1} = CH_{2}Ph$ $R^{1} = CH_{2}Bu-r$	20°, 20 h 0°, 48 h -20°, 72 h 20°, 72 h	(58) 1.7:1 (44) 1.6:1 (85) 1.9:1 (47) 2.7:1	134

TABLE 1. INTERMOLECULAR CYCLOADDITION OF ACYCLIC ALKENES AND TMM (Continued)

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
=_cor	Į.	Ni(cod) ₂		245,
	$\triangle$		COR	134
	$R^1 = H$	–20°, 72 h	(78) 1.7:1	
R = 0	$R^1 = H$	0°, 20 h	(78) 1.7:1	
R' \	$R^1 = H$	25°, 7 h	(85) 1.7:1	
	$R^1 = H$	40°, 5 h	(90) 1.5:1	
	$R^1 = Ph$	20°, 4 h	(86) 4:1	
	$R^1 = Ph$	0°, 18 h	(89) 6.7:1	
	$R^1 = Ph$	–20°, 24 h	(59) 8.1:1	
. 0		toluene, 20°, 16 h	(69) 11:1	
R = OS		0°, 16 h	(—) 13:1	
" " NEN		–20°, 16 h	(—) 21:1	
, ,		-40°, 140 h	(—) 13:1	
C ₁₄	W.		W W	
/=\				
i-Pr CO ₂ (CH ₂ ) ₂ Ph	W . S	Pd(OAc) ₂ /(i-PrO) ₃ P (1:5)	1 + () II	71
	Me₃Si ÓAc	n-BuLi, THF, 65-70°	i-Pr CO ₂ (CH ₂ ) ₂ Ph i-Pr CO ₂ (CH ₂ ) ₂ Ph	
			I + II (65), I:II = 1:5.3	
			1	
549 PWD 81	11		<u></u>	
Ph		Pd(OAc) ₂ /(i-PrO) ₃ P (1:5),	(41)	71
CO ₂ Et	Me ₃ Si OAc	n-BuLi, THF, 65-70°	Ph CO ₂ Et	
			ΪÍ	
CO.Fr	1			
Ph CO ₂ Et		Pd(OAc) ₂ /(i-PrO) ₃ P (1:5),		71
F.	Me ₃ Si OAc	n-BuLi, THF, 65-70°	Ph \ Co2E	
			700	
CO ₂ Me	SiMe ₃			
Ph 🤝 Y		(Ph ₃ P) ₄ Pd,	HO ₂ C ₁₁ (60)	155
CO₂Me	Me ₃ Si OCO ₂ Me	toluene, 80°	Ph CO ₂ Me	
	Me3SI OCO2Me		CO ₂ Me	
	11			
n-C ₅ H ₁₁		Pd(OAc) ₂ /(i-PrO) ₃ P (1:4),	\ т+ \ п	156
Tol	Ma Si DAa	THF, reflux	n-CsH ₁₁ SC Tol n-CsH ₁₁ SC Tol	
j~:	Me ₃ Si ÓAc		N	
:50			I + II (62), I:II = 3.3:1	
W 66 F	TI .	[Pd ₂ (dba) ₃ CHCl ₃ ]/	1	
Ph_CO ₂ Et		dppe (1:4),	Ts (61)	70
CO ₂ Et	Ts OCO ₂ Et	THF, reflux, 24 h	CO ₂ Et	
	is OCO2E1		Ph CO ₂ Et	
	II	(Pd-(dba)-CHCL1/	Table 1	
		[Pd ₂ (dba) ₃ CHCl ₃ ]/ dppe (1:4),	NC (73)	70
	NC OCO₂Et	THF, reflux, 18 h	CO₂Et	- C- W
		Anteropeon con contract (CO)	Ph CO₂Et	
i-Pr				
CO (CII ) Pr		Pd(OAc) ₂ /(i-PrO) ₃ P (1:4),	( ) I + ( ) II	71
CO ₂ (CH ₂ ) ₂ Ph	Me ₃ Si OAc	n-BuLi, THF, 65-70°	i-Pr CO ₂ (CH ₂ ) ₂ Ph i-Pr CO ₂ (CH ₂ ) ₂ Ph	
			I + II (80), I:II = 16:1	
			A + AA (00), A.AA = 10.1	

	Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
: <del></del>	C ₆ H ₄ OMe-4	Me ₃ Si OAc	z_	$H$ $CO_2Me$ $I$ + $H$ $CO_2Me$ $II$ $I + II (91), I:II = 2.6:$	76 1
	C ₆ H ₄ OMe-4	Me ₃ Si OAc	=	H CO ₂ Me $I + H$ CO ₂ Me $I + H$ (95), $I:H = 2.6$ :	76 1
C ₁₄₋₁	$ \begin{array}{c} O \\ N \\ Boc \end{array} $ $ R = Me $	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 110°, 12 h	Boc $I + Boc H Co_2R$ $I + II (79), I:II = 7.3:1$	243
	$R = CH_2CF_3$ $Boc$ $CO_2R$ $R = Me$ $R = CH_2CF_3$	Me ₃ Si OAc	Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P, toluene, 110°, 12 h	I + II (81), I:II = 1:0  Boc $I + II (81), I:II = 1:0$ $I + II (81), I:II = 1:0$ $I + II (81), I:II = 1:0$	243
C ₁₄	t-Bu Bu-r O'Si O CO ₂ Me	Me ₃ Si OAc	<del></del>	I + II (92), I:II = 7.5:1	76
C ₁₅	Ph	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P (1:4), THF, reflux	Ph S Tol I + Ph S Tol II	156
	Ph Tol	Me ₃ Si OAc	Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P (1:4), THF, reflux	РЬ Тоl I + РЬ Тоl II  I + II (47), I:II = 3:1	156
	PhO	Me ₃ Si OSO ₂ Me	[(EtO) ₃ P] ₂ Ni, toluene, reflux	Ph I (50)	88

-	Reactant	TMM Precursor	Conditions	FOF ACYCLIC ALKENES AND TMM (Continued)  Product(s) and Yield(s) (%)	Refs.
	Reactain	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, toluene, 115°, 11 h	I (85)	25
		SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	HO ₂ C.  Ph I + HO ₂ C.  Ph II  I + II (77), I:II = 4:1	69, 155
	n-Bu CO ₂ (CH ₂ ) ₂ Ph	Me ₃ Si OAc	Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P (1:5), <i>n</i> -BuLi, THF, 65-70°	I + II (90), I:II = 32:1	71
C ₁₇	n-Bu CO ₂ (CH ₂ ) ₂ Ph	Me ₃ Si OAc	Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P (1:5), <i>n</i> -BuLi, THF, 65-70°	I + II (89), I:II = 1:3.5	71
C ₁₇	Ph Ph	SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	HO ₂ C- HO ₂ C I + Ph	155
	Me N Ph	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P	O Me (84)	157
C ₁₈	n-Pr	Me ₃ Si OAc	(2,4-Pentadionato) ₃ In, Pd(OAc) ₂ , DIBAL-H, Ph ₃ P	I + II (78), I:II = 4.2:1	160
	O Me O Ph	C ₆ H ₄ OMe Me ₃ Si OAc	4 Pd(OAc) ₂ /(i-PrO) ₃ P	4-MeOC ₆ H ₄ O N Me (70)	157
	MeO ₂ C  H O BnO O	Me ₃ Si OAc	Ξ	MeO ₂ C H (88)	76

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Re
TBDMSO SO	ph Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, n-BuLi, toluene, 115-120°, 30 h	TBDMSO  TBDMSO  I + SO ₂ Ph  I + II (61-67), I:II = 4.2:1	148
Ph Me	Ph Me ₃ Si OAc	[Pd ₂ (dba) ₃ CHCl ₃ ]/ dppf (1:4), THF, 70°	Ph O N-Me I + Ph O II  Ph I + II (88), I:II = 3:1	157
	Me ₃ Si OCO ₂ Me	Pd(OAc) ₂ /(i-PrO) ₃ P, n-BuLi, toluene, dioxane, 110°		157
	Me ₃ Si OAc	至	Ph (80)	157
	Me ₃ Si OAc	_	AcQ, N-Me (58)	157
	Me ₃ Si OAc	Me-4 Pd(OAc) ₂ /(i-PrO) ₃ P	4-MeOC ₆ H ₄ , O O O O O O O O O O O O O O O O O O O	157
0.00	SO ₂ Ph  Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 80-85°, 18 h	PhO ₂ S	<b>1</b> 148
	Ph C ₆ H ₄ ON	Me-4 Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P	4-MeOC ₆ H ₄ O N Me	157
TBDMSO SO;	pPh Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, n-BuLi, toluene, 115-120°, 30 h	TBDMSO SO ₂ Ph (76)	148, 244

=	Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄		N N N N N N N N N N N N N N N N N N N	MeCN, 60°, 8 h, alkene, 6.6 M	1+ 0 II+	39
				I:II:III:IV = 84:2:23:1	
		MeO ₂ C CO ₂ Me Ph ₃ P Pd PPh ₃	÷	O MeO ₂ C CO ₂ Me  (—)	81
C ₄₋₇	R O	\$\sigma^s	hv, MeCN, 25°	R—SSS	107
	$R = H$ $R = SiMe_3$		4 h 48 h	(27) (19)	
C ₅		A N	hv (350 nm), 0°	1+ T+	44
				III + IV IV (23), IV (<	2)
		$\bot$	Ni(cod) ₂ /Ph ₃ P (1:1), Et ₃ B	(50)	130
		Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, THF, reflux	O H (56)	69
			Ni(cod) ₂ /Ph ₃ P (1:1), Et ₃ B	$\begin{array}{c}                                     $	130
		Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/Ph ₃ P, THF, reflux	(52)	74
		4	Ni(cod) ₂ /Ph ₃ P (1:1), Et ₃ B	(37)	130
		Me ₃ Si	Ni(cod) ₂ /Ph ₃ P (1:1), Et ₃ B	O H $SiMe_3$ I + $SiMe_3$ II $I + \Pi$ (50), I: $\Pi = 2.1$ :	130 1

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Si	Pd(allyl)Cp/i-Pr ₃ P (1:1), 144°, 5 h	SiMe ₃ II +	125
			H SiMe ₃ III I + II + III (81), I:II:III = 2.4:1:1.3	
		Cyclopentenone (10 equiv), 70°, 1 h	0	80
			II + II + III (90-98), I:II:III = 1.3:1:	3
	NC OCO ₂ Et	[Pd ₂ (dba) ₃ CHCl ₃ ]/dppe, THF, reflux, 18 h	(71)	70
	n-C ₅ H ₁₁	Ni(cod) ₂ /Ph ₃ P (1:1), Et ₃ B	$I + I = 5.6:1$ $C_5H_{11}-n \qquad n-C_5H_{11}$ $I + II (68), I:II = 5.6:1$	130
	Š	MeCN, 80°, 28 h	O H O (88)	16
	Ph	Ni(cod) ₂ /Ph ₃ P (1:1), Et ₃ B	O Ph (72)	130
	Ph	Ni(cod) ₂ /Ph ₃ P (1:1), Et ₃ B	I + II (75), I:II = 1:1.6	130
	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, reflux	O H H (75)	75
	SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	I + II (41), I:II = 1:1	155
	Ph Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, reflux	(60)	75

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs
	HC ₆ H ₄ OMe-4	_	O H H C ₆ H ₄ OMe-4 (24-30)	84
	Ts OCO ₂ Et	[Pd ₂ (dba) ₃ CHCl ₃ ]/dppe, THF, reflux, 10 h	O Ts (65)	70
	Ph	Pd(allyl)Cp/i-Pr ₃ P (1:1), 90°, 3 h	Ph (90)	64
	Ph	Pd(allyl)Cp/i-Pr ₃ P (1:1), 90°, 3 h	I (97)	64
		MeCN, 1 atm, 80°, 90 h	0 H (84)	16
	×	CH ₂ Cl ₂ , 13 kbar, 70°, 16 h	I (87)	16
C5-10 Q	Ph	Pd(allyl)Cp/i-Pr ₃ P (1:1), 130°, 6 h	Ph (61)	64
R-N	X		R-N	127
R = Me R = Ph		Ni(cod) ₂ /(2-PhC ₆ H ₄ ) ₃ P (1:4 THF, 120°, 10 h Ni(cod) ₂ /(2-PhC ₆ H ₄ ) ₃ P, (1:		
R = Ph R = Ph		THF, 120°, 5 h Ni(cod) ₂ /(2-PhC ₆ H ₄ ) ₃ P, (1: THF, 120°, 14 h Pd(allyl)Cp, <i>i</i> -Pr ₃ P (1:1), THF, 110°, 22 h	(26)	
CN CN	An N	MeCN, 75°, 1.2 h	NC $I + NC \cap H$ II + II (89), I:II = 1.3:1	246
O NO ₂	Z _n	1. MeCN, reflux 2. DBN, THF, rt	I + II (67), I:II = 3.6:1	246

Reactant	TMM Precursor	Conditions	N OF CYCLIC ALKENES AND TMM (Continued) Product(s) and Yield(s) (%)	Refs.
	Me ₃ S ₁	Pd(allyl)Cp/i-Pr ₃ P (1:1), 110°, 15 h	SiMe ₃ II + SiMe ₃ III + III (31), (I + II):III = 2.1:1	125
	X	MeCN, 80°, 28 h	0 H 0 (85)	16
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, THF, reflux, 20 h	0 H H (17)	25, 154
	SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	I + I (41), I:II = 1:1	155
	Ph	Pd(allyl)Cp/i-Pr ₃ P (1:1), 125°, 3 h	Ph (76)	64
C ₇ O CO ₂ Me	Me ₃ Si OAc	Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P (1:6), n-BuLi, C ₆ H ₆		247
CO ₂ Me	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P (1:6), n-BuLi, C ₆ H ₆	CO ₂ Me I + O II I + II (87), I:II = 1:1-2	247
D	$\bot$	Pd(acac) ₂ /Et ₂ Al(OEt)/ i-Pr ₃ P, C ₆ H ₆ , 100°, 2 h reactant:precursor = 2:1 reactant:precursor = 1:2	I + I II	124
		Pd(dba) ₂ /(i-Pr) ₂ (t-Bu)P, 110°, 0.5 h	(61)	126
OEt	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, n-BuLi, THF, reflux	OEt (25)	248
4	<u> </u>	Pd(acac) ₂ /Et ₂ Al(OEt)/ i-Pr ₃ P, C ₆ H ₆ , 100°, 1 h alkene (1 eq) alkene (2 eq)	I + II (21) I (96) I + II (21)	124, 22

Reactant	TABLE 2. INTERMOLE TMM Precursor	COLAR CYCLOADDITION Conditions	N OF CYCLIC ALKENES AND TMM (Continued)  Product(s) and Yield(s) (%)	Refs.
	I	Pd(dba) ₂ /(i-Pr) ₂ (t-Bu)P, 110°, 0.5 h	I + isomer II I + II (66), I:II = 10:1	126
	I	Ni(cod) ₂ , toluene, 40°, 3 h Pd(0), 80-100°	(78) (>75)	235
		Pd(dba) ₂ /i-Pr ₃ P (1:1), toluene	AT 1+ AT 11+	128
		40°, 20 h 60°, 20 h 90°, 2 h	III  I + II + III (9), I:II:III = 1:1:12  I + II + III (72), I:II:III = 1:1.1:7  I + II + III (72), I:II:III = 1.1:1:3.4  Ph	
	Ph		Ph	235
	$\Delta$	Ni(0), 40-60° Pd(0), 80-100°	(>75) (>75)	
	Me ₃ Sí	Pd(allyl)Cp/i-Pr ₃ P (1:1), 144°, 6 h	SiMe ₃ I+	125
			SiMe ₃ III $I + III (71), (I + II):III = 2.6:1$	
	Ph	Pd(allyl)Cp/i-Pr ₃ P (1:1), 125°, 7 h	Ph (80)	64
		MeCN, reflux	I + Π (96), I:Π = 5:1	246
$C_{7-8}$ $R$ $R = Mc$ $R = CO_2Mc$	Me ₃ Si OAc	Pd(OAc) ₂ , Et ₃ P, THF, reflux	0 R (6) (46)	147
CO ₂ Me	In	Neat, 5-fold excess of diylophile, 75°, 1.2 h	MeO ₂ C $I + MeO_2C$ $I + II (94), I:II = 4.5:1$ $II$	246
C ₉	Z, r	_	EtO ₂ C H H	84

	40/00-1957	554 65687	N OF CYCLIC ALKENES AND TMM (Continued)	n 5
Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	×	MeCN, 80°, 20 h	H. (95)	16
	Me ₃ Si OSO ₂ Me	[(EtO) ₃ P] ₂ Ni, toluene, reflux	H. H (77)	88
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, toluene, 115°, 14 h	I (52)	25, 69
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/(Ph ₃ P) ₃ , THF, 65°	I + II (63), I:II = 10:1	74, 155
	Me ₃ Si OAc	(η ³ -C ₃ H ₅ PdCl) ₂ /( <i>i</i> -PrO) ₃ P, toluene, benzene 15 kbar, 25°	$I + \Pi$ (67), $I:\Pi = 14:1$	74, 155
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/Ph ₃ P, THF, 65°	H. H	74, 153
			000	
	•	$(\eta^3$ -C ₃ H ₅ PdCl) ₂ /Ph ₃ P,	I + II + III (38), I:II:III = 1:2.2:1	74, 153
	<del>,</del>	toluene, C ₆ H ₆ , 15 kbar, 7 Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P,	$\mathbf{I} + \mathbf{II} + \mathbf{III}$ (12), $\mathbf{I} : \mathbf{II} : \mathbf{III} = 1:3.7:0$	74, 153
	Se .	toluene, 9.8 kbar, 25° Pd(OAc) ₂ /(i-PrO) ₃ P,	<b>I</b> + <b>II</b> + <b>III</b> (30), <b>I</b> : <b>II</b> : <b>III</b> = 1:1.4:0	74, 153
			$\mathbf{P}_{i}$ <b>I</b> + <b>II</b> + <b>III</b> (71), <b>I</b> : <b>II</b> : <b>III</b> = 1:1.4:0	74, 153
			<b>9</b> , <b>I + II + III</b> (64), <b>I:II:III</b> = 1.2:1:2.9	74, 153
	•	toluene, C ₆ H ₆ , 15 kbar, 2 (η ³ -C ₃ H ₅ PdCl) ₂ /tpdp, toluene, C ₆ H ₆ , 15 kbar, 7	I + II + III (77), I:II:III = 1.1:1:3.1	74, 153
	Me ₃ Si OPiv	(i-PrO ₃ P) ₄ Pd, dioxane, 150°	H- Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	242

TABLE 2. INTERMOLECULAR CYCLOADDITION OF CYCLIC ALKENES AND TMM (Continued)

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, reflux	H. (61)	75
	SiMe ₃ Me ₃ Si OAc	(Ph ₃ P) ₄ Pd, toluene, 80°	$Me_3S_1$ $H$ $I + H$ $O$ $I + II (62), I:II = 9:1$	154, 155
	SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	HO ₂ C H. (81)	154, 155
	Ph Me ₃ Si OAc	(Ph ₃ P) ₄ Pd, toluene, reflux	Ph. (76)	75
O CO₂Me	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P (1:7), n-BuLi, THF, 60°, 1.5 h	CO ₂ Me (69)	249
CO ₂ Me	<u>L</u>	Pd(Cp)(allyl)/(i-Pr) ₃ P, toluene, 120°, 5 h	I + O II	250
	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, solvent, reflux THF toluene DME DMF	I + II (77), I:II = 1:7  I + II (81)  I:II = 1:3 I:II = 1:5.3 I:II = 1:4.8 I:II = 1:1.7	250
	Š	MeCN, 80°	MeO ₂ C U	250
	$R^{1}$ $R^{2}$ $R^{1} = H, R^{2} = Ph$	Pd(Cp)(allyl)/(i-Pr) ₃ P, toluene, 110°, 1 h	I + II (quant), I:II = 1:2  Ph  MeO ₂ C  (81)	250
	R ¹ = Ph, R ² = H  SiMe ₃	Pd(Cp)(allyl)/(i-Pr) ₃ P, o-xylene, 120°	(66) MeO ₂ C SiMe ₃ (48)	250

	TABLE 2. INTERMOL	ECULAR CYCLOADDITION	N OF CYCLIC ALKENES AND TMM (Continued)	
Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	Ph	Pd(Cp)(allyl)/(i-Pr) ₃ P, toluene, 140°, 8 h	MeO ₂ C Ph (88)	250
$C_{9-10}$ $CO_2R$ $R = Me$ $R = Et$	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, THF, reflux	I + II (85), I:II = 4-5:1 $I + II (87), I:II = 4.6:1$	149
10				
Ph-N	A	Ni(cod) ₂ /(2-PhC ₆ H ₄ ) ₃ P (1:1) THF, 70°, 20 h		127
	Me ₃ Si	Ni(cod) ₂ /(2-PhC ₆ H ₄ ) ₃ P (1:1) THF, 110°, 8 h	O SiMe ₃ (44)	127
	Ph	Ni(cod) ₂ /(2-PhC ₆ H ₄ ) ₃ P (1:1) THF, 110°, 8 h	Ph (82)	127
	Ph	Ni(cod) ₂ /(2-PhC ₆ H ₄ ) ₃ P (1:2), toluene, 120°, 2 h	Ph (83)	127
	Ph	Pd(allyl)Cp/i-Pr ₃ P (1:1), THF, 110°, 22 h	I (56)	127
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, THF, reflux	(52)	69
	Me ₃ Si OPiv	Pd(OAc) ₂ /(i-PrO) ₃ P (1:10), dioxane, 150°	(50-60)	183
	SiMe ₃ Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, DIBAL-H, dioxane, 100°	SiMe ₃ (56)	155
	SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	СО ₂ Н I + СО ₂ Н П	154, 155
			I + II (68), I:II = 2.3:1	

Reactant	TMM Precursor	Conditions	N OF CYCLIC ALKENES AND TMM (Continued)  Product(s) and Yield(s) (%)	Refs.
Sh	$\bot$	Pd(acac) ₂ /Et ₂ Al(OEt)/ i-Pr ₃ P, C ₆ H ₆ , 100°, 4 h	(74)	124
CO ₂ Mo	e Me ₃ Si OAc	Pd(OAc) ₂ /Et ₃ P, THF, reflux	O // CO ₂ Me H (92)	147
$C_{10-12}$ $Q$ $R$ $R = n \cdot C_5 H_{11}$	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, THF, reflux	O R H (45)	251
$R = (CH_2)_3OBu$	1- <i>t</i>		(65)	
C ₁₁ SO ₂ Ph	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, THF, reflux, 40 h	SO ₂ Ph H (58)	25
CO ₂ Me	·	Ni(cod) ₂ /Ph ₃ P (1:1), toluene, 80-100°, 5 h	CO ₂ Me CO ₂ Me CO ₂ Me II (0)	66, 69
	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, THF, reflux	I (63)	149
	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/dppe, THF, reflux	I + II (72), I:II = 4:1	60
	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, THF, reflux	$I + \bigcup_{E \in CO_2Me}^E \Pi$	149
			I + II (71), I:II = 5:1	
C ₁₁₋₁₄ X	₂ Me Me ₃ Si OPiv	Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P, <i>n</i> -BuLi, THF, 60°	X CO ₂ Me I + CO ₂ Me II	249
X = -OCH2CH2 $X = -OCH2C(M)$ $X = -OCH2C(M)$	fe) ₂ CH ₂ O—	1.5 h overnight 6 h	I (48) + II (39) I (38) + II (26) I (33) + II (48)	
C ₁₂ O O O O O O O O O O O O O O O O O O O	Me ₃ Si OAc	[Pd ₂ (dba) ₃ CHCl ₃ ]/Ph ₃ P, THF, 70°, 6 h	OBn I + OBn	154
C ₁₃			I + II (54), I:II = 2:1	
SO ₂ Ph	Me ₃ Si OAc	Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P, THF, reflux	SO ₂ Ph (7)	149

Reactant	TABLE 2. INTERMOLI TMM Precursor	ECULAR CYCLOADDITI  Conditions	ON OF CYCLIC ALKENES AND TMM (Continued)  Product(s) and Yield(s) (%)	Refs.
	SiMe ₃ SiMe ₃ OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	H.CO ₂ H (66)	155
C ₁₄ OTBDMS	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, n-BuLi, THF, reflux, 4 h	OTBDMS (94)	248, 146
COPh	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, THF, reflux	(29)	149
	SiMe ₃ Me ₃ Si OCO ₂ Me	(Ph ₃ P) ₄ Pd, toluene, 80°	H.CO ₂ H (70)	155
MOMO SO ₂ Ph	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 150°	MOMO I + II (51), I:II = 2:1	148
RO OEt	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, n-BuLi, THF, reflux	RO OEt	248, 146
R = TBDMS R = COPh  C ₁₄₋₂₈ OR  SO ₂ Ph R = TBDMS R = TBDMS R = TIPS R = TBDPS R = MOM	Me ₃ Si OAc	Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P Pd(PPh ₃ ) ₄ Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P	(70) (70) OR H I + II (53), I:II = 9:1 I + II (36), I:II = 8.5:1 I + II (35), I:II = 5.5:1 I + II (72), I:II = 6.3:1 I + II (56), I:II = 5.4:1	77
OR SO ₂ Ph R = TBDMS R = TBDMS R = TBDPS	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P Pd(PPh ₃ ) ₄ Pd(OAc) ₂ /(i-PrO) ₃ P	OR OR I H II $SO_2Ph$ $I + II (50), I:II = 4.6:1$ $I + II (12), I:II = 4:1$ $I + II (50), I:II = 3:1$	77
$R = MOM$ $C_{18-19}$ $R = Me$ $R = CO_2Me$	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P  Pd(OAc) ₂ /P(OEt) ₃ THF, reflux	I + II (54), I:II = 8:1  O R H (5) (71)	180

C ₁₉ O CO ₂ Me				
H.	Me ₃ Si OAc	Pd(OAc) ₂ /(EtO) ₃ P, THF, reflux	H. CO ₂ Me	147
C ₆₀	×	1,2-Cl ₂ C ₆ H ₄ , 70°, overnight	1+	173
			П І+П (61), І:П = 1:1.3	
	Me ₃ Si OAc	Pd(PPh ₃ ) ₄ , toluene, reflux, 48 h	1 (33)	252
	Me ₃ Si OAc	Pd(PPh ₃ ) ₄ , benzene, reflux, 72 h	I (25)	253
C ₇₀	X	1,2-Cl ₂ C ₆ H ₄ , 80-90°, 26 h	I + II +	254
			$X$ , $X = OCH_2CMe_2CH_2O$ , $Y$ , $Y = H$ or	
			$X, X = H, Y, Y = OCH_2CMe_2CH_2O$	

Product(s) and Yield(s) (%) Refs. Reactant TMM Precursor Conditions C₃ Pd(acac)2/Et2Al(OEt)/i-Pr3P H₂C=CH₂ 255 (1:1:2), 100°, 2 h Pd(dba)2/i-Pr3P (1:1), I (14) + II (25) 255 100°, 2 h  $C_6$ MeO₂C———CO₂Me THF, reflux 85 n-C5H15 Ni(cod)₂/(2-PhC₆H₄O)₃P (1:1), 132 Me₃Si = 80°, 5-8 h ш I + II + III (48), I:II:III = 1:5.2:2.1(88) 107 MeCN, 80°, 14 h C7 CO₂Me Solvent, reflux, slow addition 86 of precursor, 4.5 h MeO₂C MeO2C Reactant Solvent Precursor 1.2 M 0.40 M THF (15)0.051 M <2.6 x 10⁻³ M Hexanes (70)Me₃Si CO₂Me Ni(cod)2/(2-PhC6H4O)3P (1:1), (72)132 80°, 5-8 h Ni(cod)2/(2-PhC6H4O)3P (1:1), 132 80°, 5-8 h Ш I + II + III (64), I:II:III = 2:1:1.8C5H11-n n-C₅H₁₁ Ni(cod)₂/(2-PhC₆H₄O)₃P (1:1), 80°, 5-8 h Me₃Si n-C₂H₁₁. ш Me₃Si I + II + III (65), I:II:III = 1.1:1:2.4

	Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
		×	MeCN, 80°, 18 h	СО ₂ Ме I + О П SiMe ₃ Ne ₃ Si CO ₂ Me I (72), I:II = 13:1	107
		Ph	Ni(cod) ₂ /(2-PhC ₆ H ₄ O) ₃ P 80°, 5-8 h	Ph	132
				Ph	:1.5
		Ph	Ni(cod) ₂ /(2-PhC ₆ H ₄ O) ₃ P 80°, 5-8 h	I	132
	n-Bu———SOMe	X	MeCN, 100°, 27 h	SOMe $Bu-n$ (63)	107
	_н -Ви— <del>—</del> —SO ₂ Me	×	MeCN, 100°, 27 h	$SO_2Me$ $Bu-n$ (85)	107
	_M /e ₃ Si-==-Et		Ni(cod) ₂ /(2-PhC ₆ H ₄ O) ₃ P 80°, 5-8 h	(1:1), (48) Me ₃ Si Et	132
		I	Ni(cod) ₂ /(2-PhC ₆ H ₄ O) ₃ P 80°, 5-8 h	Me ₃ Si Et Me ₃ Si Et	132
				I + II (88), I:II = 5.7:1	
		Ph	Ni(cod) ₂ /(2-PhC ₆ H ₄ O) ₃ P 80°, 5-8 h	(1:1), Ph Ph Ph II + Me ₃ Si Et	132
				Ph $III$ $III + III (92), I:II:III = 3.8:1.5:$ $Me_3Si$ $Et$	1
C ₈	Me3Si = SiMe3	I	Ni(cod) ₂ /(2-PhC ₆ H ₄ O) ₃ P 80°, 5-8 h	(1:1), (50) Me ₃ Si SiMe ₃	132

-	Reactant	TMM Precursor	AR CYCLOADDITION OF ALKYNES OR A Conditions	Product(s) and Yield(s) (%)	Refs.
	ACCOUNT.	Ph	Ni(cod) ₂ /(2-PhC ₆ H ₄ O) ₃ P (1:1), 80°. 5-8 h	Ph (48) Me ₃	132
		Ph	Ni(cod) ₂ /(2-PhC ₆ H ₄ O) ₃ P (1:1), 80°, 5-8 h Me ₃ Si Sik	I + Ph II Me ₃ SiMe ₃	132
	n-Bu─────CO ₂ Me	×	MeCN, 100°, 56 h	I + II (71), I:II = 1:1.1  CO ₂ Me  I + O  O  O  II  O  O  II  A-Bu  CO ₂ Me  I (49), I:II = 4.6:1	107
C9	H ₂ C——Ph	Ph OEt Ph OEt Cr(CO)4  II + Ph OEt Cr(CO)4  II I:II = 3:1	25° Ph OEt	Cr(CO) ₄ (—)	80
	Ph—==—SO ₂ Me	X IMESSI	MeCN, 80°, 26 h	$SO_2Me$ $I + O$ $Ph$ $SO_2Me$ $I (66), I:II = 4.6:1$	107
	Me ₃ Si	×	MeCN, 100°, 10 h	CO ₂ Pr- <i>i</i> (59) SiMe ₃	107
	Me ₃ SiOSiMe ₃		Ni(cod) ₂ /(2-PhC ₆ H ₄ O) ₃ P (1:1), 80°, 5-8 h Me ₃ Si	(59) DSiMe ₃	132
		I	Ni(cod) ₂ /(2-PhC ₆ H ₄ O) ₃ P (1:1), 80°, 5-8 h Me ₃ SiO	SiMe ₃ II + SiMe ₃	132
		Ph Ph	Ni(cod) ₂ /(2-PhC ₆ H ₄ O) ₃ P (1:1), 80°, 5-8 h	III I + III + III (64), I:II:III = 1:10:5  Ph I + Ph SiMe ₃	132

TABLE 3. INTERMOLECULAR CYCLOADDITION OF ALKYNES OR ALLENES AND TMM (Continued)

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%) Re
C ₁₀ Ph─────────CO ₂ Me	X	MeCN, 80°, 29 h	I = 2.1:1
THPOCO ₂ Pr-i	×	MeCN, 80°, 44 h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
c ₁₃	opr-i o	MeCN, 100°, 36 h	I + CO ₂ Pr-i II 107

TABLE 4. INTRAMOLECULAR CYCLOADDITION OF ALKENES AND TMM

TABLE 4. INTRAMOLECULAR CYCLOADDITION OF ALKENES AND TMM				
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
CI Pd		CD ₃ NO ₂ , 25° =	-PdCl (66)	256
CF CF	НО	THF, 67°, 3 h	H CHO II + CHO II II I + II (66-85), I:II = 1.6:1	95
MeO ₂ C	>	Pd(allyl)Cp/i-Pr ₃ P, o-xylene, 137°	I + I $I + I$ $I = I$ $I =$	144
H N	CO₂Me	THF, reflux	CO ₂ Me III + CO ₂ Me III + MeO ₂ C I	95 <b>V</b>
			I + II + III + IV (83), $I:II:III:IV = 16:5:1.5:1$	

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	PdCl ₂ (PPh ₃ ) ₂ , DIBAL-H, toluene, 90°	(74)	143
ОН	THF, reflux, 3-4 h	H CH ₂ OH I + H CH ₂ OH II +	93
An		H CH ₂ OH III + CH ₂ OH IV	
aur.		I + II + III + IV (91), $I:II:III:IV = 13:1:12:15$	
MeO ₂ C	Pd(allyl)Cp/i-Pr ₃ P, o-xylene, 120°	MeO ₂ C (87)	144
C ₁₂₋₁₃ R  Fe(CO) ₃	Me ₃ NO, benzene, 80°	R H	169
$R = H$ $R = Me$ $C_{13}$ $Fe(CO)_3$	Me ₃ NO, benzene, 80°	(40) (42) Fe(CO) ₂ I (52) + H II (5)	169
	THF (0.1 M), reflux	I + II (76), I:II = 5:1	92
HO		H HO I	98, 99
	MeCN, 81° MeCN, hv, 6° MeOH, 61° MeOH, hv, 6° MeOH, hv, -60°	I + sum of minor isomers (Mir) I:Mir       (—)     3.8:1       (87-96)     9.1:1       (—)     4.7:1       (—)     9.1:1       (—)     30:1	
СОМе	THF, reflux, 3-4 h	H COMe I + H COMe II +	93
An .		H COMe H COMe H + COMe II + III + III + IV (98), I:II:III:IV = 32:1:3:2	

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
H CO ₂ Me	MeCN, reflux	I + II (87), I:II = 7:1	91
C ₁₄	MeCN, reflux, 10 h	Н Ме I + Н Ме II + II (40), I:II = 2:1	91
MeO OMe	THF, reflux, 3-4 h	MeO OMe  H  I +   MeO OMe  H  II +   III + III (86), I:II:III:IV = 12:1:1.4	93
C ₁₅ CO ₂ Et	Ni(cod) ₂ /Ph ₃ P, toluene, 11  Ni(acac) ₂ , DIBAL-H, Ph ₃ I  toluene, 90°	EtO ₂ C	142, 14 142, 14
	PdCl ₂ (PPh ₃ ) ₂ , DIBAL-H, toluene, 130°	I (98)	142, 1
H CO ₂ Me	MeCN, reflux, 6 h	I + II (85), I:II = 9:1	89, 90 91
H	MeCN, reflux, 6 h	СО ₂ Ме Н	91
J. FS	MeCN, reflux, 48 h	1 + H	185
• •		I + II (80), I:II = 1:1	

TABLE 4. INTRAMOLECULAR CYCLOADDITION OF ALKENES AND TMM (Continued)				
Substrate	Conditions	Product(s) and Yield(s) (%)  OMe OMe OMe OMe	Refs	
OMe OMe	THF, reflux, 3-4 h	OMe H OMe H + III (68), I:II:III = 1:8.2:7.5	93	
Me ₃ Si OAc MeO ₂ C	(Ph ₃ P) ₄ Pd/dppe, BSA, THF, reflux	MeO ₂ C H (51)	165	
E Geometry of Alkene	Pd(PPh ₃ ) ₄ , toluene, reflux, 2-5 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58	
$CO_2Et$ $E$ $CO_2Et$ $Z$ $COMe$ $E$ $SO_2Ph$ $E$ $CN$ $Z:E = 1:2$		(78) 1:0 (75) 1:0 (81) 1:0 (60) 1:0 (92) 1:1		
$E \xrightarrow{H} C_7H_{15}-n$ $E \xrightarrow{Geometry \text{ of Alkene}}$ $CO_2Et \qquad E$ $CO_2Et \qquad Z$ $SO_2Ph \qquad E$ $CN \qquad Z:E = 1:4$	Pd(PPh ₃ ) ₄ , toluene, reflux, 2-5 h	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58	
CO ₂ Me	MeCN, 80°, 16 h	$ \begin{array}{c} O \\ H \end{array} $ $ \begin{array}{c} CO_2Me \\ H \end{array} $ $ (80) $	113	
O MeO ₂ C	MeCN, 80°, 32 h	CO ₂ Me H (82)	113	
CO ₂ Me CO ₂ Me	MeCN, 80°, 1.5 h	$CO_2Me$ $CO_2Me$ $I + II (86), I:II = 1:2$ $CO_2Me$ $I + II (86), I:II = 1:2$	112, 11	

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	D H C ₇ H ₁₅ -n	Pd(PPh ₃ ) ₄ , toluene, reflux, 4 h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	58
1	EtO ₂ C		EtO ₂ C H  EtO ₂ C H $C_7H_{15}-n$ D $H$ $C_7H_{15}-n$ $E_1O_2$ C H	
	$D \longrightarrow H C_7H_{15}-n$ $EtO_2C \longrightarrow O$	Pd(PPh ₃ ) ₄ , toluene, reflux, 1 h	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58
C ₁₉	MeO ₂ C OBn	1. Pd ₂ (dba) ₃ /(i-PrO) ₃ P, toluene, 110° 2. DIBAL-H, toluene, -78°	т Д п	257, 143
Į	O MeO ₂ C CO ₂ Me	MeCN, 80°, 5 h	$CO_2Me$ $C$	113
Ī	OTBDMS  H  N  N	MeCN, reflux	H CO ₂ Me H CO ₂ Me H II H OTBDMS OTBDMS I + II (80-91), I:II = 11.8:1	97
· <b>1</b>	TBDMSQ H N	MeCN, reflux, 2.5 h	CO ₂ Me H OTBDMS  I + H OTBDMS  CO ₂ Me H OTBDMS  I + II + III (91), I:II:III = 13.6:1.15	97, 258 9:1
		hv, MeCN, 7°	OTBDMS  I + II + III (85), I:II:III = 26:1:1.5	97, 258
C ₂₀	Me ₃ Si OR OPHO ₂ S OR	Pd(OAc) ₂ /(i-PrO) ₃ P (1:6)	PhO ₂ S H PhO ₂ S H II	168
	$R = CO_2Me$ R = COMe	THF, 60° BSA, dioxane, 100°	I + II (34), I:II = 1:1.2 I + II (72), I:II = 1:7.2	

Substrate Conditions Product(s) and Yield(s) (%) Refs.

CO₂Bu-t Pd(OAc)2/dppe, BSA, 184 m-xylene, reflux, overnight -CO₂Bu-t Ш I + II + III (70), I:II:III = 10:1:2Pd(OAc)2/(i-PrO)3P, 168 dioxane, 100° PhO₂S I + II + III (47), I:II:III = 5.4:2:1(Ph₃P)₄Pd/dppe, 165 BSA, THF, reflux  $C_{21}$ Pd(OAc)2/(i-PrO)3P, (71) 167 Me₃SnOAc, MS, toluene Pd(OAc)₂/(i-PrO)₃P (1:6), (75) 168 BSA, dioxane, 100-110° Pd(OAc)₂/(i-PrO)₃P (1:6), 168 MeO₂CO BSA, THF, rt, 18 h 165 (Ph₃P)₄Pd/dppe, BSA, THF, reflux I + II (73), I:II = 2:1C22 168 Pd(OAc)2/(i-PrO)3P, MeO₂CO dioxane, 100° PhO₂S I + II (66), I:II = 2.4:1PhO₂S Me₃Si (Ph₃P)₄Pd/dppe, BSA, (33) 165 MeO₂CO THF, reflux PhO₂S

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
Me ₃ Si O PhO ₂ S	Pd(OAc) ₂ /(i-PrO) ₃ P (1:6), dioxane, 100°	$PhO_{2}S \stackrel{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}}{\overset{\mathbf{I}}}}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}}}{\overset{\mathbf{I}}}}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}}{\overset{\mathbf{I}}}}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}}}{\overset{\mathbf{I}}}}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}}{\overset{\mathbf{I}}}}{\overset{\mathbf{I}}}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}}}}}{\overset{\mathbf{I}}}}{\overset{\mathbf{I}}}}}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}}}}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}}}}{\overset{\mathbf{I}}}}{\overset{\mathbf{I}}}}}}{\overset$	168 I = 8.2:1
Me ₃ Si O O O O O O O O O O O O O O O O O O O	Pd(OAc) ₂ /(i-PrO) ₃ P (1:6), dioxane, reflux	$\begin{array}{c} H \\ \downarrow \\ H \\ \downarrow \\ SO_2Ph \end{array}  I  + \begin{array}{c} O \\ \downarrow \\ \\ SO_2Ph \end{array}  II \\ I + II  (62), I:II = 1 \\ I + II  (62), II $	166 = 1.7:1
Me ₃ Si OCO ₂ Me NC OTBDMS	(Ph ₃ P) ₄ Pd/dppe, BSA, THF, reflux	H II + III + IV + V (68), NC H OTBDMS  V I + II + III + IV + V (68), I:II:III:IV:V = 8:4:3:1:1	166
Ph Ph	Pd(dba) ₂ /(i-PrO) ₃ P (1:1), toluene, 110°, 42 h	Ph H (47)	140, 141
Me ₃ Si O O O O O O O O O O O O O O O O O O O	Pd(OAc) ₂ /(i-PrO) ₃ P (1:6), dioxane, reflux	$\begin{array}{c} \begin{array}{c} O \\ H \\ \end{array} \\ \begin{array}{c} O \\ H \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} O \\ H \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} II \\ \end{array}$	+ 166
		H. $H$ $O$ $III$ $III + III (63), I:II:III = 25:7$	:1
Me ₃ Si O O O O O O O O O O O O O O O O O O O	Pd(OAc) ₂ /(i-PrO) ₃ P (1:6), dioxane, reflux	PhO ₂ S II +	166
		H - H = H = H = H = H = H = H = H = H =	Í

Substrate Product(s) and Yield(s) (%) Refs. Conditions C₂₅ Me₃Si Pd(OAc)2/(i-PrO)3P, 167 Me₃SnOAc, MS, toluene PhO₂S ш I + II + III (83), I:II:III = 9.5:5:1C₂₆ **OTBDMS** PivO (80-90) MeCN, reflux 96 **OTBDMS** C₂₇ 168 Pd(OAc)2/(i-PrO)3P, PhO₂S THF, rt, 9 h OTBDMS I + II + III + IV (90), I:II:III:IV = 2:8:2:1C₂₇₋₃₇ Pd(OAc)2/(i-PrO)3P, 165 BSA, THF Ш + R = TBDMSI + II + III + IV (76-82), I:II:III:IV = 4:3:2:1, R = TBDPSI:II:III:IV = 9:4:2:1

TABLE 4. INTRAMOLECULAR CYCLOADDITION OF ALKENES AND TMM (Continued)

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
Me ₃ Si O O O O O O O O O O O O O O O O O O O	$\Rightarrow$	Pd(OAc) ₂ /(i-PrO) ₃ P (1:6), dioxane, rt	$H \to H \to$	166
C ₃₃ PivO OTBDMS	O OBn	MeCN, reflux	OTBDMS Pivo (85)	96
C ₃₀₋₃₆ TBDMSO H N R = (-	-CO ₂ R*	MeCN, reflux	OBn  CO ₂ R*  H  OTBDMS  I + II (83), I:II = 5.6 (1:1.2 ds):1	100
R = (- C ₃₉ Me ₃ Si  OCO ₂ M  PhO ₂ S  OSiP		Pd(OAc) ₂ /(i-PrO) ₃ P	$I + II (84), I:II = 3.3 (1:1.2 ds):1$ $PhO_2S H OR PhO_2S H OR R = SiPh_3$ $I + II + III (67), I:II:III = 5.2:4.5:1$	165

TABLE 5. INTRAMOLECULAR CYCLOADDITION OF ALKYNES AND TMM

Substra	te Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₂ MeO ₂ C	Pd ₂ (dba) ₃ /( <i>i</i> -PrO) ₃ P (1:4), toluene, 110°	(54) MeO ₂ C	259
C ₁₅	Pd ₂ (dba) ₃ /(i-PrO) ₃ P (1:2), toluene, reflux, 1.5-2 h	MeO ₂ C (68)	57
C ₁₅₋₂₁ R  H C ₆ H ₁₁	Pd ₂ (dba) ₃ /(i-PrO) ₃ P, toluene, reflux, 3 h	H C6H11	57, 240
R = CH2OH $R = CH2OTBDMS$ $R = Me$ $R = COMe$ $R = COMe$	Pd(PPh3)4, toluene, reflux, 2-4 h	(85) (100) (<5) (52) (92)	
$R = H$ $CO_2Me$ $CO_2Me$	Pd ₂ (dba) ₃ /( <i>i</i> -PrO) ₃ P (1:2), toluene, 110°	$CO_2Me$ $CO_2Me$ $CO_2Me$	259
$R = CN$ $R = SiMe_3$ $R = SO_2Ph$		(44) (0) (41)	

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₆₋₁	MeO ₂ C CO ₂ Me	Pd(dba) ₂ /(i-PrO) ₃ P, toluene, 110°, 42 h	$\begin{array}{c} R \\ CO_2Me \end{array} + \begin{array}{c} R \\ CO_2Me \end{array}$	139, 259
	R = H R = Me R = H R = Me	Ni(cod) _{2,} toluene, 0°	$I + \Pi$ (40), $I:\Pi = 1:0$ $I + \Pi$ (59), $I:\Pi = 1:0$ $I + \Pi$ (20), $I:\Pi = 0:1$ $I + \Pi$ (50), $I:\Pi = 0:1$	139, 259
	MeO ₂ C H R	Pd ₂ (dba) ₃ /( <i>i</i> -PrO) ₃ P (1:2), toluene, reflux, 1.5-2 h	MeO ₂ C I	57, 240
	$R = c-C_6H_{11}$ $R = n-C_7H_{15}$ $R = n-C_7H_{15}$	Pd(PPh ₃ ) _{4,} toluene, reflux, 2 h	(72) (70) I (83)	57, 240
	MeO ₂ C $R = c \cdot C_6 H_{11}$ $R = n \cdot C_7 H_{15}$	Pd ₂ (dba) ₃ /(i-PrO) ₃ P (1:2), toluene, reflux, 1.5-2 h	MeO ₂ C (75) . (71)	57, 240
C ₁₇	$\begin{array}{c} R^1 \\ R^2 \\ \text{MeO}_2C \end{array} \longrightarrow \begin{array}{c} CO_2Me \\ CO_2Me \end{array}$	Pd ₂ (dba) ₃ /(i-PrO) ₃ P, toluene, 110°	MeO ₂ C CO ₂ Me MeO ₂ C CO ₂ Me II	144
	$R^1 = Mc$ , $R^2 = H$ $R^1 = H$ , $R^2 = Mc$ $R^1 = H$ , $R^2 = Mc$ R = Mc R = Mc R = OMc	Pd ₂ (dba) ₃ /(i-PrO) ₃ P (1:2), toluene, reflux, 1.5-2 h	$I + II (59), I:II = 5:1$ $I + II (21), I:II = 5:1$ $R = 5:1$ $C_6H_{13}-n$ (complex mixture)  (75)	57
	R = Me	Pd(PPh ₃ ) _{4,} toluene, reflux, 2 h	I (43)	57
	$MeO_2C$ $D_2$ $H$ $C_7H_{15}$ - $n$	Pd ₂ (dba) ₃ /( <i>i</i> -PrO) ₃ P (1:4), toluene, reflux, 7 h	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	240, 57
C ₁₈	Ме ₃ Si	Pd(PPh ₃ ) ₄ , toluene, reflux, 12 h	H C ₇ H ₁₅ -n O (46) Me ₃ Si	57

TABLE 5. INTRAMOLECULAR CYCLOADDITION OF ALKYNES AND TMM (Continued)

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂₁	TBDMS H.C ₇ H ₁₅ -n	Pd ₂ (dba) ₃ /(i-PrO) ₃ P (1:2), MS, toluene, reflux, 12 h	H C ₇ H ₁₅ -n (40)	57
	MeO ₂ C OTIPS	<ol> <li>Pd₂(dba)₃/(i-PrO)₃P (1:4), toluene, 110°</li> <li>TBAF, THF</li> </ol>	I + II (61), I:II = 1:1	259
C ₂₂	$n-C_3H_7-n$ $H$ $C_6H_{11}$	Pd ₂ (dba) ₃ /(i-PrO) ₃ P (1:2), toluene, reflux, 1.5-2 h	$n-C_3H_7$ $C_3H_7-n$ $C_6H_{11}$ $C_6H_{11}$ $C_6H_{11}$ $C_6H_{11}$ $C_6H_{11}$ $C_6H_{11}$	57
C ₂₃	PhMe ₂ Si C ₇ H ₁₅ -n	Pd(PPh ₃ ) ₄ , toluene, reflux, 12 h	$\begin{array}{c} H & C_7H_{15}-n \\ O & (40) \end{array}$	57
C ₂₉	Ph Ph MeO ₂ C OSiMe ₃	Pd(dba) ₂ /( <i>i</i> -PrO) ₃ P (1:1), toluene, 110°	Ph Ph Ph Ph Ph II (38) MeO ₂ C OSiMe ₃ MeO ₂ C OSiMe ₃	140, 14

TABLE 6. INTERMOLECULAR CYCLOADDITION OF CARBONYL COMPOUNDS AND TMM

R	eactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
CO ₂		I	C ₆ H ₆ , 40 atm CO ₂ , 130°, 20 h	у 1 + у п	136
		2	Pd(dba) ₂ /Ph ₃ P (1:4)	I (69) + II (8)	
			Pd(dppe) ₂	I (trace) + II (48)	
			Pd(dba) ₂ /(EtO) ₃ P (1:4)	I (8) + II (trace)	
			Pd(dba) ₂ /n-Bu ₃ P (1:4) Pd(dba) ₂ /Me ₂ P(CH ₂ ) ₂ PMe	I(1) + II(5) I(4) + II(7)	
	,	r-Pr	C ₆ H ₆ , 40 atm CO ₂ , 130°, 20 h Pd(Ph ₃ P) ₄ Pd(dppe) ₂	n-Pr O I + O II  I (38) + II (29) I (14) + II (12)	136
	(		C ₆ H ₆ , 40 atm CO ₂ , 130°, 20 h	у т т	136
			Pd(dba) ₂ /Ph ₃ P (1:4) Pd(dppe) ₂	I (32) + Π (trace) I (5) + Π (21)	
(CH ₂ O) _n	,		ZnCl ₂ , THF, reflux	(87)	85

-	Reactant	TMM Precursor	Conditions	RBONYL COMPOUNDS AND TMM (Continued)  Product(s) and Yield(s) (%)	Refs.
C ₅	онс о	Me ₃ Sn OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, 40°	O (81)	159
		$\mathbb{R}$	Pd(PPh ₃ ) ₄ /P(O)Bu ₃ (1:2), neat, 120°	O R R	135
		$R = n-C_4H_9$ $R = n-C_6H_{13}$ $Ph \qquad \qquad R$	5 h 11 h	(75) (71)	135
		R = H R = Me	20 h 16 h	(42) (86)	
		n-Bu_Bu-n	Pd(PPh ₃ ) ₄ /P(O)Bu ₃ (1:2), neat, 120°, 12 h	$ \begin{array}{cccc} & & & & & & & & & & & & & & & & & & & $	135
	OHC S	n-BuBu-n	Pd(PPh ₃ ) ₄ /P(O)Bu ₃ (1:2), neat, 120°, 19 h	n-Bu $Bu-n$ (64)	135
	онс	× ×	Toluene, 80-100°, 19 h	O O I + CHO II  I (49), I:II = 2:1	110
		Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, n-Bu ₃ SnOAc, THF, reflux	1 (80)	260, 146
		Me ₃ Sn OAc	Pd(OAc) ₂ /Ph ₃ P, THF, reflux	I (73)	146
		Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, Me ₃ SnOAc	T I + Π (68), I:Π = 2.7:	161 1
	t-BuCHO		Toluene, 100°, 63 h	O + O O Bu-t I (81), I:II = 13:1	110
C ₆	OHC O	п-Ви_Ви-п	Pd(PPh ₃ ) ₄ /P(O)Bu ₃ (1:2), neat, 120°, 6 h	n-Bu $Bu-n$ $O$ $O$ $O$ $O$	135
			Pd(PPh ₃ ) ₄ /P(O)Bu ₃ (1:2), neat, 120°, 20 h	(77)	135

Reactant	TMM Precursor	Conditions	RBONYL COMPOUNDS AND TMM (Continued)  Product(s) and Yield(s) (%)	Refs.
, cardan	× .	Toluene, 130°, 18 h	I (56), I:II = 24:1	110
CHO F F F	×	Toluene, 80°, 4 h	$C_6F_5$ I (75), I:II = 12:1	110
СНО	X	Toluene, 80°, 8 h	$C_6H_4Cl-4$ $I$ (81), $I:II = 6.7:1$	110
СНО	Z,	THF, reflux	I + H Ph II +	85
			Ph III + H - Ph III + IV (78), I:II:III:IV = 8.4:1:9.6:	1 <b>v</b>
	×	Toluene, 80°, 11 h	O I + O Π Ph I (84), I:II = 8.1:	110 1
		C ₆ H ₆ , 80°, 21 h	Ph Ph I (85), I:Π = 2.9	110 9:1
	Bu ₃ Sn OAc	Pd(OAc) ₂ /(i-PrO) ₃ P dioxane, reflux	O (100)	159
OHC	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, n-Bu ₃ SnOAc, THF, reflux	(88)	260, 146
	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P	т + У п	161
	75	n-Bu ₃ SnOAc Me ₃ SnOAc	$I + \Pi$ (46), $I:\Pi = 1.1:1$ $I + \Pi$ (82), $I:\Pi = 3.1:1$	
	Me ₃ Si OAc	Pd(OAc) ₂ /i-Pr ₃ P, Me ₃ SnOAc, C ₆ H ₆	(82)	161

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	PhS Me ₃ Si OAc	Pd(OAc) ₂ /tpdp, dioxane, 100°	PhS (57)	162
СНО	X	Toluene, 80°, 4 h	$C_6H_{13}-n$ I (84), I:II = 24:1	110
C8 OHC	n-Bu_Bu-n	Pd(PPh ₃ ) ₄ /P(O)Bu ₃ (1:2), neat, 120°, 19 h	n-Bu $0$ $0$ $0$ $0$ $0$	135
СНО	Š	Toluene, 80°, 20 h	$C_{6}H_{4}OMe-4$ I (82), I:II = 6.7:1	110
	n-Bu Bu-n	Pd(PPh ₃ ) ₄ /P(O)Bu ₃ (1:2), neat, 120°, 32 h	n-Bu Bu-n C ₆ H ₄ OMe-4 (38)	135
O Ph	×	Toluene, 100°, 30 h	O I + O Ph II  I (81), I:II = 13:1	110
EtO ₂ C CO ₂ Et	A n	THF, reflux	$CO_2Et$ $CO_2Et$ $CO_2Et$	85
		THF, reflux	$\begin{array}{c c}  & I + \\  & CO_2E_1 \\ \hline  & CO_2E_1 \end{array}$ II +	85
			III = III + III (63), $I:II:III = 1.6:1.1:1$	
	Me ₃ Si OCOCMe ₃	(2,4-pentadionato) ₃ In, [Pd ₂ (dba) ₃ CHCl ₃ ]/Ph ₃ P, dioxane	CO ₂ Et (81)	160
C ₉ OHC ✓ Ph	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, reflux, slow addition of TMM precursor	O I (75)	146

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
		Pd(OAc) ₂ /Ph ₃ P, n-Bu ₃ SnOAc, THF, reflux	I (89)	260
	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, n-Bu ₃ SnOAc, THF, reflux	I (95)	146
	Bu ₃ Sn OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, reflux	I (65)	159
	Me ₃ Si OAc	Pd(OAc) ₂	I + O II	161
		Ph ₃ P, THF Ph ₃ P, n-Bu ₃ SnOAc, THF	I + II (30), I:II = 1:1 I + II (48), I:II = 1.6:1	
		Ph ₃ P, n-Bu ₃ SnOAc, C ₆ H ₆ Ph ₃ P, Me ₃ SnOAc, THF	I + II (85), I:II = 1.6:1 I + II (95), I:II = 3.3:1	
		Ph ₃ P, Me ₃ SnOAc, C ₆ H ₆	I + II (86), I:II = 12:1	
		Ph ₃ P, Me ₃ SnOAc, C ₆ H ₁₂ TIPP, Me ₃ SnOAc, C ₆ H ₆	I + II (55), I:II = 2.6:1 I + II (64), I:II = 1.5:1	
	300	Ph ₃ P, (AcOSnBu ₂ ) ₂ O, C ₆ H ₆	I + II (80), I:II = 3.4:1	
	Me ₃ Sn OAc	Pd(OAc) ₂ /Ph ₃ P, Me ₃ SnOTs, C ₆ H ₆	I + II (82), I:II = 32:1	161
	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, Me ₃ SnOAc, C ₆ H ₆	I + II (94), I:II = 1:200	161
	Me ₃ Si OPiv	Pd(OAc) ₂ /(i-PrO) ₃ P, Me ₃ SnOA	c (good)	242
	Me ₃ SnCl	(Ph ₃ P) ₄ Pd, Me ₃ SnOTs, 8 h	Ph	161
	Me ₃ Sn OAc	Pd(OAc) ₂ /Ph ₃ P, Me ₃ SnOTs THF, 24 h	Ph I + II (53), I:II =	161 2:1
	M_OCO ₂ Me	(Ph ₃ P) ₄ Pd/Ph ₃ P, Me ₃ SnOTs, C ₆ H ₆ , 70°, 2 d	Ph I + O II	161
	$M = SiMe_3$ $M = SnMe_3$		I + II (40), I:II = 9:1 I + II (49), I:II = 2:1	
	Ph Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, Me ₃ SnOAc, C ₆ H ₆	O I (72)	161
	Ph. Me ₂ PhSi OAc	Pd(OAc) ₂ /Ph ₃ P, Me ₃ SnOAc, C ₆ H ₆	I (51)	161

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	PhS Me ₃ Si OAc	Pd(OAc) ₂ /tpdp dioxane, 100°	O (50-56)	162
OHCPh	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, R ₃ SnOAc, THF, reflux	O R = n-Bu (71) Ph R = Me (99)	260, 146
OHC OMe	Me ₃ Si OPiv	Pd(OAc) ₂ /(i-PrO) ₃ P, Me ₃ SnOAc	(good) OMe	242
ОНС О ОМе	Bu ₃ Sn OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, reflux	OMe (81)	159
	Me ₃ Si OPiv	Pd(OAc) ₂ /(i-PrO) ₃ P, Me ₃ SnOAc	I + II (good), I:II = 3:1	242
	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, dioxane, 100°, 8 h	Ph (61)	146
O Ph	Me ₃ Si OAc	(2,4-pentadionato) ₃ In, Pd(OAc) ₂ , DIBAL-H, ligand  ligand  (i-Pr) ₃ P toluene, reflux dppp toluene, reflux (n-Bu) ₃ P toluene, reflux Ph ₃ P toluene, reflux Ph ₃ P dioxane	O Ph I + O II   I + III	160
онс-	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, reflux, slow addition of TMM precursor	I (71)	260, 146
	Bu ₃ Sn OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, reflux	I (59)	159
O Bu-1	×	Toluene, 130°, 18 h	I + 0 0 II	110 t
		13-14 kbar, CH ₂ Cl ₂ , 100°, 62 h	I + II (81), I:II = 4:1 I + II (74), I:II = 4:1	110
n-C ₉ H ₁₉ CHO	Bu ₃ Sn OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, reflux	O _{1-C₉H₁₉ (68)}	159

Reactant	TMM Precursor	Conditions	RBONYL COMPOUNDS AND TMM (Continued)  Product(s) and Yield(s) (%)	Refs.
Сно		Pd(OAc) ₂ /(i-PrO) ₃ P,		
	Me ₃ Si OAc	dioxane, reflux, slow addition of TMM precu	rsor (88)	146
	PhS Me ₃ Si OAc	Pd(OAc) ₂ /tpdp, dioxane, 100°	PhS (50-56)	162
Ph	Me ₃ Si OAc	(2,4-pentadionato) ₃ In, Pd(OAc) ₂ , DIBAL-H, Ph ₃ P	O Ph Ph I + II (87), I:II = 3:1	160
OHC Ph	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, reflux, slow addition of TMM precu	rsor Ph (75)	260, 146
OHC O Ph	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, n-Bu ₃ SnOAc, THF, reflux	0 0 0 0 Ph	260, 146
OHC V ₈	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, Me ₃ SnOAc, THF, reflux	(89)	146
	Me ₃ Sn OAc	Pd(OAc) ₂ /Ph ₃ P	1 + 11 (72), 1:II = 2.9:1	161
	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, Me ₃ SnOAc	I + II (86), I:II = 1:16	161
O _{Dn}	Me ₃ Si OAc	[Pd ₂ (dba) ₃ CHCl ₃ ]/Ph ₃ P, THF, 70°, 6 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146
OBn	Me ₃ Si OAc	(Ph ₃ P) ₄ Pd/Ph ₃ P, <i>n</i> -Bu ₃ SnOAc, THF, 70°, 2 h	OBn I + OBn II I+II (84) I:II = 2:1	146
O Ph	Me ₃ Si OAc	[Pd ₂ (dba) ₃ CHCl ₃ ]/Ph ₃ P, THF, reflux	(59)	248

Reactant	TMM Precursor	Conditions	RBONYL COMPOUNDS AND TMM (Continued)  Product(s) and Yield(s) (%)	Refs.
СНО	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, Me ₃ SnOAc, THF, reflux	0 (84)	146
	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, Me ₃ SnOAc	I+II (90), I:II = 11:1	161
	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, Me ₃ SnOAc	I + II (81), I:II = 1:95	161
	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, Me ₃ SnOAc	Ph	161
	PhS Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, Me ₃ SnOAc, BSA, toluene, 65-95°	PhS (41)	162
C ₁₃	Me ₃ Si OAc	(2,4-pentadionato) ₃ In, Pd(OAc) ₂ , DIBAL-H, Ph ₃ P	Ph (81)	160
MeQOTBDMS	Me ₃ Si OAc	[Pd ₂ (dba) ₃ CHCl ₃ ]/Ph ₃ P, n-Bu ₃ SnOAc, C ₆ H ₆ , 2 h	MeQ (91) OTBDMS	146
MeQ OTBDMS	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, C ₆ H ₆ , reflux, 1 h	MeQ (81) OTBDMS	146
OHC OO I	Ph Bu ₃ Sn OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, reflux	$= \underbrace{\downarrow}_{H} \underbrace{\downarrow}_{O} \underbrace{\downarrow}_{O} \underbrace{\downarrow}_{Ph} $ (66)	159

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₅ O	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, toluene, 100°, 22 h	Ph 0 (80)	146
Ph Ph	Me ₃ Si OAc	(2,4-pentadionato) ₃ In, Pd(OAc) ₂ , DIBAL-H, Ph ₃ P	O Ph Ph I II (83), I:II = >99:1	160
PhOCO	Me ₃ Si OAc	Pd(PPh ₃ ) ₄ /Ph ₃ P, THF, reflux, 16 h	PhOCO OEt (54)	248, 14
PhOCO	Me ₃ Si OAc	[Pd ₂ (dba) ₃ CHCl ₃ ]/Ph ₃ P, n-Bu ₃ SnOAc, THF, reflux, 5 h	Phoco II + Phoco II	146
Ph O O O	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, n-Bu ₃ SnOAc, THF, reflux	Ph I + II (80), I:II = 1.5:1	159
	Bu ₃ Sn OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, reflux	I (74)	146
Ph O O O O O O O O O O O O O O O O O O O	Me ₃ Si OAc	(2,4-pentadionato) ₃ In, Pd(OAc) ₂ , DIBAL-H, Ph ₃ P	$ \begin{array}{c} Ph \\ Q \\ H \end{array} $ $ \begin{array}{c} Ph \\ H \end{array} $ $ \begin{array}{c} (74) \end{array} $	160
C ₂₁ OHC	Me ₃ Si OAc	Pd(OAc) ₂ /Ph ₃ P, n-Bu ₃ SnOAc, THF, reflux	I (94) 3:1 ds	260, 146
	Me ₃ Si OAc	In(acac) ₃ , Pd(OAc) ₂ , DIBAL-H, Ph ₃ P, toluene	I (94) >19:1 ds	160
	Me ₃ Sn OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, 40°	I (80)	159

TABLE 7. INTRAMOLECULAR CYCLOADDITION OF ALDEHYDES AND TMM

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₃	Me ₃ Si OAc	[Pd ₂ (dba) ₃ CHCl ₃ ]/( <i>i</i> -PrO) ₃ P, <i>n</i> -Bu ₃ SnOAc, BSA, THF, reflux	(31)	261
C ₁₄	N H	MeCN, 100°, 2 h	-0 0 H (90)	113
C ₁₅	Me ₃ Si OAc	[Pd ₂ (dba) ₃ CHCl ₃ ]/( <i>i</i> -PrO) ₃ P, <i>n</i> -Bu ₃ SnOAc, BSA, THF, 70°	) 1+ \ II	261
	H	MeCN, 80°, 1 h	-O H (55)	113
C ₁₇	Me ₃ Si OAc OCO ₂ Me	[Pd ₂ (dba) ₃ CHCl ₃ ]/(i-PrO) ₃ P, n-Bu ₃ SnOAc, BSA, THF, 70°	$I + II (35), I:II = 2.5:1$ $R = CO_2M$	261 Ie

TABLE 8. INTERMOLECULAR CYCLOADDITION OF IMINES OR OXIMES AND TMM

Rea	Reactant TMM Precursor Conditions		Product(s) and Yield(s) (%)	Refs.	
C ₆ MeQ N	>	X	MeCN, 100°, 85 h	O O O (92)	50
NCO ₂ Me		X	MeCN, 50°, 12 h	O O O O O O O O O O O O O O O O O O O	.111
		Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, 140°	$ \bigcirc \bigcirc$	50
MeO. N CO2B	u-t		CD ₃ CN, 80°, 30 h	X OBn I + X $CO_2Bu-t$ II  X, X = $CH_2C(Me)_2CH_2$ I + II (88), I:II = 8.1:1	50
Nr NO ₂		Me ₃ Si OAc	Pd(OAc) ₂ /( <i>i</i> -PrO) ₃ P, THF, 65°	$N$ -NO ₂ $P_{r-i}$ Pr- $i$ (87)	163

	Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₈					
-	MeQ N Ph	X	MeCN, 120-130°, 36 h	ONE (70)	50
		"	CH ₂ Cl ₂ , 10 kbar, 80°, 24 h	I (76)	50
	NBu-t	Me ₃ Si OSO ₂ Me	[(EtO) ₃ P] ₂ Ni, toluene, reflux	N-Bu-r (50)	88
C9	NCO ₂ Me	Š	MeCN, 80°, 11 h	O O O O (777) $Ph$	111
	MeQ N C ₆ H ₄ OMe-4	$\searrow$	CH ₂ Cl ₂ , 10 kbar, 80°, 24 h	$ \begin{array}{c} O \\ O \\ C_6H_4OMe-4 \end{array} (70) $	50
	NPh	Me ₃ Si OSO ₂ Me	[(EtO) ₃ P] ₂ Ni, toluene, reflux	N-Ph (40)	88
Cı	1-27	V			
	BnO N CO ₂ R ¹			$X \xrightarrow{R^2} OBn \qquad I + X \xrightarrow{N} OBn \qquad II$ $X \xrightarrow{CO_2R^1} I \times X \xrightarrow{R^2} CO_2R^1 \qquad II$ $X, X = CH_2C(Me)_2CH_2$	50
	$R^1 = Me$	$R^2$ $R^2 = Me$	CD ₃ CN, 80°, 4 h	I + II (81), I:II = 2.5:1	
	$R^1 = Me$	$R^2 = i-Pr$	CD ₃ CN, 80°, 21 h	I + II (81), I:II = 3.5:1	
	$R^1 = t$ -Bu $R^1 = t$ -Bu	$R^2 = Me$	CD ₃ CN, 80°, 10 h	I + II (99), I:II = 6.8:1 I + II (89), I:II = 9:1	
	K = t-Bu	$R^2 = i-Pr$	CD ₃ CN, 80°, 17 h DMSO-d ₆ , 80°, 21.5 h	I + II (96), I:II = 10:1	
			toluene-d ₈ , 80°, 36 h	I + II (85), I:II = 6.1:1	
	w1 w	72 <b>3</b> 52	neat, 80°, 18 h	I + II (83), I:II = 5.3:1	
	$R^1 = Ph$ $R^1 = CH_2Ph$	$R^2 = i - Pr$ $R^2 = i - Pr$	CD ₃ CN, 80°, 4 h CD ₃ CN, 80°, 16.5 h	I + II (41), I:II = 3.3:1 I + II (71), I:II = 4.9:1	
	$R^1 = 2,4,6-Me_3C_6H_2$	$R^2 = i$ -Pr	CD ₃ CN, 80°, 8 h	I + II (83), I:II = 1:1.3	
	$R^1 = 2,4,6-t-Bu_3C_6H_2$	$R^2 = i-Pr$	CD ₃ CN, 80°, 40 h	I + II (41), I:II = 7.3:1	
CI	NPh CO ₂ Et	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, 100°	$N^{-\text{Ph}}$ $CO_2Et$	163
	BnO. N CO ₂ Me	X	Neat, 100°, 4 h	$O \longrightarrow N^{\prime}OBn$ $CO_{2}Me$ (66)	50
	N O ₂ s	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 100 °	N O ₂ S (94)	163

n coults			NOF IMINES OR OXIMES AND TMM (Continued)	D-C-
Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
NO ₂	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, THF, 65°	$ \begin{array}{c} N^{NO_2} \\ \end{array} (72) $	163
C ₁₂ NTs	×	MeCN, 60°, 3 h	$ \begin{array}{c}                                     $	m
	Me ₃ Si OAc	Pd(OAc) ₂ , n-BuLi, Ph ₃ P, 64°	$N^{-Ts}$ $O$ $O$ $O$ $O$	163
		Pd(PPh ₃ ) ₄ /P(O)Bu ₃ (1:2), toluene, 120°, 20 h	N-Ts 0 (71)	137
	Ph	Pd(PPh ₃ ) ₄ /P(O)Bu ₃ (1:2), toluene, 120°, 13 h	$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	137
	$R = n-C_4H_9$ $R = n-C_6H_{13}$	Pd(PPh ₃ ) ₄ /P(O)Bu ₃ (1:2), toluene, 120° 16 h 18 h	N-Ts R Q (89) (88)	137
NTs S	n-Bu Bu-n	Pd(PPh ₃ ) ₄ /P(O)Bu ₃ (1:2), toluene, 120°, 17 h	n-Bu $N-Ts$ $Bu-n$ $S$ $(91)$	137
NTs		MeCN, 60°, 4.5 h	0 0 N-Ts (72) + 0 NTs (14)	111
NTs Bu-t	X	MeCN, 80°, 5.5 h	O O O O (86) $Bu-t$	111
	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 100°	$N^{-Ts}$ $Bu-t$ (90)	163
	п-ВиВи-п	Pd(PPh ₃ ) ₄ /P(O)Bu ₃ (1:2), toluene, 120°, 3 d	$N^{-Ts}$ (57)	137
C ₁₃ 2-NO ₂ C ₆ H ₄ N Ph	Me ₃ Si OSO ₂ Me	[(EtO) ₃ P] ₂ Ni, toluene, reflux	$ \begin{array}{c}                                     $	88

	1.17 ( P. C. C. P. C. )		ON OF IMINES OR OXIMES AND TMM (Continued)	2 4
Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
NPh     Ph	Z _N	THF, reflux	NPh I + NPh II + NPh III + NPh III  I + II + III (75), I:II:III = 12:1:12	į 85
	Me ₃ Si X X = OMs X = OMs X = OAc X = OAc X = OMs	[(EtO) ₃ P] ₂ Ni [Pd ₂ (dba) ₃ CHCl ₃ ], P(OEt) ₃ (1:8) " (PPh ₃ ) ₄ Pd (PPh ₃ ) ₄ Pd	N-Ph Ph (77) (52) (73) (27) (19)	88
BnQ	X	MeCN, 100°, 29 h	$ \begin{array}{c} O \\ O \\ O \\ N \end{array} $ (66)	50
NTs N	Me ₃ Si OCOCMe ₃	Pd(OAc) ₂ , n-BuLi, (i-PrO) ₃ P, 40°	N-Ts (94)	163
NPh EtO ₂ C CO ₂ Et	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, THF, 65°	$N-Ph$ $CO_2Et$ $CO_2Et$ $(84)$	163
Ph N N Ph	Me ₃ Si Cl	[Pd ₂ (dba) ₃ CHCl ₃ ]/ P(OEt) ₃ (1:8), toluene, reflux	N ^N Ph (55)	88
BnO. N C ₆ H ₄ Cl-4	×	MeCN, 100°, 31 h	$ \begin{array}{c} O \\ O \\ O \\ C_6H_4Cl-4 \end{array} (99) $	50
NTs Ph	EtOOEt	MeCN, 80°, 3 h	EtO OEt N-Ts (90)	111
	X	MeCN, 80°, 2 h	O O (92)	111
	Me ₃ Si OAc	Pd(OAc) ₂ , n-BuLi, Ph ₃ P, 64°	N-Ts (97)	163
	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, THF, reflux	NC Ph (quant)	163
	ROOR	MeCN, heat	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111
	$R, R = Et$ $R, R = CH_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)_2C(Me)$	CH ₂	I + II (98), I:II = 1.7:1 I + II (47), I:II = 1.6:1	

Reactant	TMM Precursor	Conditions	N OF IMINES OR OXIMES A Produc	t(s) and Yield(s) (%)	Refs.
	t-Bu	MeCN, heat	o O O (3	35)	111
	Ph Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, THF, 40°	Ph Ph Ph	N-Ts II Ph I+II (quant), I:II =	163 = 4.7:1
NTs C ₆ H ₄ Cl-2	Me ₃ Si OCOCMe ₃	Pd(OAc) ₂ , n-BuLi, (i-PrO) ₃ P, 40°	$N^{-Ts}$ $C_6H_4Cl-2$ (90	))	163
NTs C ₆ H ₄ NO ₂ -3	Me ₃ Si OAc	Pd(OAc) ₂ , n-BuLi, (i-PrO) ₃ P, 64°	N-Ts C ₆ H ₄ NO ₂ -3	9)	163
NTS	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 100°	N-Ts (50	)	163
NTs O C ₁₅ NTS	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 100°	N-Ts $O$ (50	)	163
Ph	Me ₃ Si OSO ₂ Me	[(EtO) ₃ P] ₂ Ni, toluene, reflux	N-Ph (69	)	88
MeN——Ph	$\blacksquare$	Pd(PPh ₃ ) ₄ , 127°, 29 h	N-Me Ph (38)		138
NTs    C ₆ H ₄ (CF ₃ )-4	n-Bu Bu-n	Pd(PPh ₃ ) ₄ / P(O)Bu ₃ (1:2), toluene, 120°, 24 h	N-Ts $R$ -Bu- $R$ - $R$	(88)	137
NTs C ₆ H ₄ Me-4	n-Bu Bu-n	Pd(PPh ₃ ) ₄ / P(O)Bu ₃ (1:2), toluene, 120°, 12 h	N-Ts  N-Ts  C ₆ H ₄ Me-4	(91)	137
NTs C ₆ H ₄ OMe-4	Me ₃ Si OAc	Pd(OAc) ₂ , n-BuLi, Ph ₃ P, 64°	N-Ts C ₆ H ₄ OMe-4	(95)	163
	n-Bu Bu-n	Pd(PPh ₃ ) ₄ / P(O)Bu ₃ (1:2), toluene, 120°, 9 h	n-Bu Bu-n C ₆ H ₄ OMe-4	(94)	137
NTs O	Me ₃ Si OCOCMe ₃	Pd(OAc) ₂ , <i>n</i> -BuLi, ( <i>i</i> -PrO) ₃ P, 40°	N-Ts O	(99)	163
	n-Bu Bu-n	Pd(PPh ₃ ) ₄ / P(O)Bu ₃ (1:2), toluene, 120°, 16 h	N-Ts N-Ts	(93)	137
NTs	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 100°	N ^{-Ts}	2)	163

Reactant	TMM Precursor	Conditions	ON OF IMINES OR OXIMES AND TMM (Continued)  Product(s) and Yield(s) (%)	Refs.
C ₁₆ NTs Ph	×	MeCN, 60°, 3.5 h	O (81) + O O (12)  Ph Ph	m
	Me ₃ Si OCOCMe ₃	Pd(OAc) ₂ , n-BuLi. (i-PrO) ₃ P, 40°	$N^{-Ts}$ (99)	163
NTs OMe	Me ₃ Si OPiv	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, 150°	N-Ts (quant) OMe	242
	PhS Me ₃ Si OAc	Pd(OAc) ₂ /tpdp, dioxane, 100°	PhS OMe ()	162
C ₁₇	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 100°	N (80)	163
NTs H	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, 100°	$N^{-Ts}$ $H$ (22)	163
C ₁₈ NTs	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, toluene, 100°	$N-Ts$ $(80)$ $Me_3S_1$	163
C ₂₀ PhN Ph	$\bot$	Pd(PPh ₃ ) ₄ , 126°, 24 h	N-Ph Ph (96)	138
	1	Pd(PPh ₃ ) ₄ , 123°, 22 h	N-Ph Ph I (46) + N-Ph Ph II (31)	138
		Pd(PPh ₃ ) ₄ , 128°, 30 h	I (44) + II (31)	138
	I	Pd(PPh ₃ ) ₄ , 123°, 30 h	N-Ph I (93)	138
	æ	Ni(cod) ₂ / (2-PhC ₆ H ₄ O) ₃ P (1:1), 70°, 7 h	Ph I (93)	138
		Pd(PPh ₃ ) ₄ , 123°, 30 h	N-Ph I (91)	138
		Ni(cod) ₂ / (2-PhC ₆ H ₄ O) ₃ P (1:1), 70°, 7 h	Ph 1 (94)	138

TABLE 8. INTERMOLECULAR CYCLOADDITION OF IMINES OR OXIMES AND TMM (Continued)

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
NTs Ph Ph	×	MeCN, 60°, 12 h	$ \begin{array}{c} O \\ O \\ N^{-T_S} \end{array} $ (85)	111
C ₂₉ NTS H H O	Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, 100°	Ts (76)	163
Ts H H H	OR Me ₃ Si OAc	Pd(OAc) ₂ /(i-PrO) ₃ P, dioxane, 100°	Ts H H OR	163
			I + Π (quant), I:Π = 1:1  Ts  H  H  OR	

TABLE 9. INTERMOLECULAR CYCLOADDITION OF OXYGEN AND TMM

	Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₀	2	Zz z	hv, O ₂ (80 psi), CCl ₄ , 40°, 36 h	(40)	262
		×	Toluene, 80°, 24 h	(40)	48
		F	CHCl ₃ , 28°, 32 h	F F F T T +	51
		# ⁽²⁾		III I + II + III (67), I:II:III = 12:7.2:1	
			CHCl ₃ , 28°, 32 h	I + 0-0	51
				I + II (75), I:II = 12:1	

TABLE 9. INTERMOLECULAR CYCLOADDITION OF OXYGEN AND TMM (Continued)

Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	Refs.
	Ph	hv	Ph O-O Ph	263
		DCA, MeCN, 15 min DCA-BP, MeCN, 15 min TCNB, MeCN, 20 min TCNB, CH ₂ Cl ₂ , 30 min TCNB-BP, CH ₂ Cl ₂ , 15 min NMQ ⁺ BF ₄ ⁻ , toluene, MeCN, 5 min	(100) (100) (100) (4) (96)	
	Ph Ph	hv, O ₂ (150 psi), CFCl ₃ , 40°, 51 h	Ph Ph (37)	262
	Ph Ph	hv, O ₂ (5 bar), MeCN, -10°, 2 h	Ph Ph (70)	264

## TABLE 10. MISCELLANEOUS

	Reactant	TMM Precursor	Conditions	Product(s) and Yield(s) (%)	
C ₄	MeO ₂ CN=NCO ₂ Me	J.	Acceptor (xs), 40-60°	$N-N$ $MeO_2\dot{C}$ $CO_2Me$ $(-)$	8
C ₆	Ph-N=O	Ph Ph	MeCN 60°, 3 h hv (λ>300 nm), 4 h	Ph Ph N Ph (77) (25)	87
C ₁₃	S Ph Ph		THF, reflux	\ 1 / \ (   X	Ph II + 85 Ph
				S _{Ph} III I+II+III(	91), <b>I</b> :II:III = 2.6:1.1:1

## References

- 1. Dowd, P. J. Am. Chem. Soc. 1966, 88, 2587.
- 2. Dowd, P. Acc. Chem. Res. 1972, 5, 242.
- 3. Cramer, C. J. J. Chem. Soc., Perkin Trans. 2 1998, 1007.
- Platz, M. S.; McBride, J. M.; Little, R. D.; Harrison, J. J.; Shaw, A.; Potter,
   S. E.; Berson, J. A. J. Am. Chem. Soc. 1976, 98, 5725.
- Baseman, R. J.; Pratt, D. W.; Chow, M.; Dowd, P. J. Am. Chem. Soc. 1976, 98, 5726.
- 6. Dowd, P.; Chow, M. Tetrahedron 1982, 38, 799.
- 7. Dowd, P.; Sengupta, G.; Sachdev, K. J. Am. Chem. Soc. 1970, 92, 5726.
- 8. Berson, J. A.; McDaniel, D.
- 9. Berson, J. A. Acc. Chem. Res. 1978, 11, 446.
- Little, R. D. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I.; Paquette, L. A., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, pp. 239–270.
- 11. Little, R. D. Chem. Rev. 1986, 86, 875.
- 12. Little, R. D. Chem. Rev. 1996, 96, 93.
- 13. Allan, A. K.; Carroll, G. L.; Little, R. D. Eur. J. Org. Chem. 1998, 1.
- Berson, J. A. In Rearrangements in Ground and Exited States; de Mayo,
   P., Ed.; Academic Press: New York, 1980; pp. 311–390.
- 15. Gajewski, J. J. *Hydrocarbon Thermal Isomerizations*; Academic Press New York 1981;
- 16. Yamago, S.; Nakamura, E. J. Am. Chem. Soc. 1989, **111**, 7285.
- 17. Nakamura, E. In *Organic Synthesis in Japan. Past, Present, and Future*; Noyori, R., Ed.; Tokyo Kagaku Dojin, 1992; p 275.
- 18. Emerson, G. F.; Ehrlich, K.; Giering, W. P.; Lauterbur, P. C. J. Am. Chem. Soc. 1966, **88**, 3172.
- 19. Ehrlich, K.; Emerson, G. F. J. Am. Chem. Soc. 1972, **94**, 2464.
- 20. Jones, M. D.; Kemmitt, R. D. W. Adv. Organomet. Chem. 1987, 27, 279.
- 21. Noyori, R.; Nishimura, T.; Takaya, H. J. Chem. Soc., Chem. Commun. 1969, 89.
- 22. Binger, P.; Schuchardt, U. Angew. Chem. Int. Ed. Engl. 1977, **16**, 249.
- 23. Binger, P.; Büch, H. M. Top. Curr. Chem. 1987, 135, 77.
- Ohta, T.; Takaya, H. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I.; Paquette, L. A., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, pp. 1185–1205.
- 25. Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1979, 101, 6429.
- 26. Trost, B. M. Angew. Chem., Int. Ed. Engl. 1986, 25, 1.

- 27. Trost, B. M. Pure Appl. Chem. 1988, **60**, 1615.
- Chan, D. M. T. In Comprehensive Organic Synthesis; Trost, B. M.;
   Fleming, I.; Paquette, L. A., Eds.; Pergamon Press: Oxford, 1991; Vol. 5,
   pp. 271–314.
- 29. Akiba, K. J. Syn. Org. Chem. Japan 1973, **31**, 635; Chem, Abstr. 1973, **80**, 59028.
- 30. Welzel, P. Nachr. Chem., Tech. Lab. 1983, **31**, 638; Chem. Abstr. 1983, **99**, 212170.
- 31. Binger, P.; Fox, D. In *Methoden der Organischen Chemie* (*Houben-Weyl*); Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E., Eds.; Georg Thieme Verlag: Stuttgart, 1995; Vol. **E 21c**, pp. 2997–3059.
- 32. Binger, P.; Schmidt, T. *Methoden der Organischen Chemie* (*Houben-Weyl*); de Meijere, A., Ed.; Georg Thieme Verlag: Stuttgart, 1996, Vol. **E 17c**, pp. 2217–2294.
- 33. Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49.
- 34. Nakamura, E.; Yamago, S. Acc. Chem. Res. 2002, 35, in press.
- 35. Berson, J. A.; Duncan, C. D.; Corwin, L. R. J. Am. Chem. Soc. 1974, **96**, 6175.
- 36. Platz, M. S.; Berson, J. A. J. Am. Chem. Soc. 1980, **102**, 2358.
- 37. Berson, J. A.; Corwin, L. R.; Davis, J. H. J. Am. Chem. Soc. 1974, **96**, 6177.
- 38. Platz, M. S.; Berson, J. A. J. Am. Chem. Soc. 1977, **99**, 5178.
- 39. Corwin, L. R.; McDaniel, D. M.; Bushby, R. J.; Berson, J. A. J. Am. Chem. Soc. 1980, **102**, 276.
- 40. Berson, J. A.; Duncan, C. D.; O'Connell, G. C.; Platz, M. S. J. Am. Chem. Soc. 1976, **98**, 2358.
- 41. Berson, J. A.; McDaniel, D. M.; Corwin, L. R. J. Am. Chem. Soc. 1972, **94**, 5510.
- 42. Siemionko, R. K.; Berson, J. A. J. Am. Chem. Soc. 1980, 102, 3870.
- 43. Carpenter, B. K.; Little, R. D.; Berson, J. A. J. Am. Chem. Soc. 1976, **98**, 5723.
- 44. Siemionko, R.; Shaw, A.; O'Connell, G.; Little, R. D.; Carpenter, B. K.; Shen, L.; Berson, J. A. Tetrahedron Lett. 1980, **38**, 3529.
- 45. Feller, D.; Tanaka, K.; Davidson, E. R.; Borden, W. T. J. Am. Chem. Soc. 1982, **104**, 967.
- 46. Buchwalter, S. L. Tetrahedron 1982, 38, 799.
- 47. Creary, X.; Mehrsheikh-Mohammadi, M. E. J. Org. Chem. 1989, **54**, 2904.
- 48. Nakamura, E.; Yamago, S.; Ejiri, S.; Dorigo, A. E.; Morokuma, K. J. Am.

- Chem. Soc. 1991, 113, 3183.
- 49. LeFevre, G. N.; Crawford, R. J. J. Org. Chem. 1986, **51**, 747.
- 50. Yamago, S.; Nakamura, M.; Wang, X.-Q.; Yanagawa, M.; Tokumitsu, S.; Nakamura, E. J. Org. Chem. 1998, **63**, 1694.
- 51. Dolbier, Jr. W. R.; Burkholder, C. R. Tetrahedron 1985, **41**, 297.
- 52. Noyori, R.; Hayashi, N.; Kato, M. J. Am. Chem. Soc. 1971, **93**, 4948.
- 53. Noyori, R.; Hayashi, N.; Kato, M. Tetrahedron Lett. 1973, 2983.
- 54. Gilbert, J. C.; Butler, J. R. J. Am. Chem. Soc. 1970, 92, 2168.
- 55. Yamago, S.; Ejiri, S.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 1993, **115**, 5344.
- 56. Ejiri, S.; Yamago, S.; Nakamura, E. J. Am. Chem. Soc. 1992, **114**, 8707.
- 57. Lautens, M.; Ren, Y. J. Am. Chem. Soc. 1996, 118, 9597.
- 58. Lautens, M.; Ren, Y. J. Am. Chem. Soc. 1996, 118, 10668.
- 59. Oishi, Y.; Sakamoto, E.; Fujimoto, H. Inorg. Chem. 1996, **35**, 231.
- 60. Binger, P.; Wedemann, P. Tetrahedron Lett. 1985, 26, 1045.
- 61. Binger, P.; Schuchardt, U. Chem. Ber. 1981, 114, 3313.
- Noyori, R.; Kumagai, Y.; Umeda, I.; Takaya, H. J. Am. Chem. Soc. 1972,
   94, 4018.
- 63. Noyori, R.; Odagi, T.; Takaya, H. J. Am. Chem. Soc. 1970, 92, 5780.
- 64. Binger, P.; Bentz, P. Angew. Chem., Int. Ed. Engl. 1982, 21, 622.
- 65. Binger, P.; Wedemann, P. Tetrahedron Lett. 1983, 24, 5847.
- 66. Trost, B. M.; Chan, D. M. J. Am. Chem. Soc. 1980, 102, 6359.
- 67. Trost, B. M.; Chan, D. M. J. Am. Chem. Soc. 1983, 105, 2326.
- 68. Gordon, D. J.; Fenske, R. F.; Nanninga, T. N.; Trost, B. M. J. Am. Chem. Soc. 1981, **103**, 5974.
- 69. Trost, B. M.; Chan, D. M. J. Am. Chem. Soc. 1983, **105**, 2315.
- 70. Shimizu, I.; Ohashi, Y.; Tsuji, J. Tetrahedron Lett. 1984, 25, 5183.
- 71. Trost, B. M.; Miller, M. J. Am. Chem. Soc. 1988, **110**, 3687.
- Singleton, D. A.; Schulmeier, B. E. J. Am. Chem. Soc. 1999, 121, 9313.
- 73. Trost, B. M.; Nanninga, T. N. J. Am. Chem. Soc. 1985, **107**, 1075.
- 74. Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1981, **103**, 5972.
- Trost, B. M.; Nanninga, T. N.; Satho, T. J. Am. Chem. Soc. 1985, 107, 721.
- 76. Trost, B. M.; Lynch, J.; Renaut, P. Tetrahedron Lett. 1985, **26**, 6313.
- 77. Trost, B. M.; Mignani, S. M. Tetrahedron Lett. 1986, **27**, 4137.
- 78. Ward, J. S.; Pettit, R. J. Chem. Soc., Chem. Commun. 1970, 1419.
- 79. Mondo, J. A.; Berson, J. A. J. Am. Chem. Soc. 1983, 105, 3340.
- 80. Aumann, R.; Uphoff, J. Angew. Chem., Int. Ed. Engl. 1987, 26, 357.

- 81. Su, C.-C.; Chen, J.-T.; Lee, G.-H.; Wang, Y. J. Am. Chem. Soc. 1994, **116**, 4999.
- 82. Little, R. D.; Carroll, G. L. J. Org. Chem. 1979, 44, 4720.
- 83. Stone, K. J.; Little, R. D. J. Org. Chem. 1984, 49, 1849.
- 84. Little, R. D.; Bukhari, A.; Venegas, M. Tetrahedron Lett. 1979, 20, 305.
- 85. Little, R. D.; Bode, H.; Stone, K. J.; Wallquist, O.; Dannecker, R. J. Org. Chem. 1985, **50**, 2401.
- 86. Lin, X.; Little, R. D. Tetrahedron Lett. 1997, 38, 15.
- 87. Adam, W.; Bottle, S. E.; Peters, K. Tetrahedron Lett. 1991, 32, 4283.
- 88. Jones, M. D.; Kemmitt, R. D. W. J. Chem. Soc., Chem. Commun. 1986, 1201.
- 89. Little, R. D.; Muller, G. W. J. Am. Chem. Soc. 1979, 101, 7129.
- 90. Little, R. D.; Muller, G. W. J. Am. Chem. Soc. 1981, 103, 2744.
- 91. Little, R. D.; Muller, G. W.; Venegas, M.; Carroll, G. L.; Bukhari, A.; Patton, L.; Stone, K. Tetrahedron 1981, **37**, 4371.
- 92. Little, R. D.; Higby, R. G.; Moeller, K. D. J. Org. Chem. 1983, 48, 3139.
- 93. Masjedizadeh, M. R.; Dannecker-Doerig, I.; Little, R. D. J. Org. Chem. 1990, **55**, 2742.
- 94. Campopiano, O.; Little, R. D.; Petersen, J. L. J. Am. Chem. Soc. 1985, **107**, 3721.
- 95. Billera, C. F.; Philipp, C.; Little, R. D. J. Org. Chem. 1994, **59**, 2270.
- 96. McLoughlin, J. I.; Brahma, R.; Campopiano, O.; Little, R. D. Tetrahedron Lett. 1990, **31**, 1377.
- 97. Little, R. D.; Stone, K. J. J. Am. Chem. Soc. 1983, **105**, 6976.
- 98. Hijfte, L. V.; Little, R. D. J. Org. Chem. 1985, **50**, 3940.
- 99. Hijfte, L. V.; Little, R. D.; Petersen, J. L.; Moeller, K. D. J. Org. Chem. 1987, **52**, 4647.
- 100. Little, R. D.; Moeller, K. D. J. Org. Chem. 1983, 48, 4487.
- 101. Moeller, K. D.; Little, R. D. Tetrahedron Lett. 1985, 26, 3417.
- 102. Griller, D.; Ingold, K. U. Acc. Chem. Res. 1980, 13, 317.
- 103. Newcomb, M. Tetrahedron 1993, 49, 1151.
- 104. Nonhebel, D. C. Chem. Soc. Rev. 1993, 347.
- 105. Carroll, G. L.; Little, R. D. Tetrahedron Lett. 1998, **39**, 1893.
- 106. Isaka, M.; Ejiri, S.; Nakamura, E. Tetrahedron 1992, 48, 2045.
- 107. Nakamura, M.; Tohanoh, H.; Ohara, H.; Nakamura, E. Org. Lett. 1999, 1, 7.
- 108. Organic High Pressure Chemistry; Le Noble, W. J., Ed.; Elsevier: Amsterdam, 1988.
- 109. Yamago, S.; Ejiri, S.; Nakamura, E. Angew. Chem., Int. Ed. Engl. 1995,

- **34**, 2154.
- 110. Yamago, S.; Nakamura, E. J. Org. Chem. 1990, **55**, 5553.
- 111. Yamago, S.; Yanagawa, M.; Nakamura, E. Chem. Lett. 1999, 879.
- 112. Yamada, T.; Uekusa, H.; Ohashi, Y.; Yamago, S.; Wang, X.-Q.; Nakamura, E. Acta Cryst. 1995, **C51**, 1137.
- 113. Nakamura, M.; Togano, M.; Wang, X. Q.; Yamago, S.; Nakamura, E. Chem. Lett. 2000, 664.
- 114. Salaun, J. R.; Champion, J.; Conia, J. M. Org. Synth. Coll. Vol.**6** 1988, 320.
- 115. Arora, S.; Binger, P. Synthesis 1974, 801.
- 116. Lautens, M.; Delanghe, P. H. M. J. Org. Chem. 1993, **58**, 5037.
- 117. Lautens, M.; Delanghe, P. H. M. J. Am. Chem. Soc. 1994, 116, 8526.
- 118. Lautens, M.; Ren, Y. J. Org. Chem. 1996, 61, 2210.
- 119. Utimoto, K.; Tamura, M.; Sisido, K. Tetrahedron 1973, 29, 1169.
- 120. Halazy, S.; Dumont, W.; Krief, A. Tetrahedron Lett. 1981, 22, 4737.
- 121. Hiyama, T.; Kanakura, A.; Morizawa, Y.; Nozaki, H. Tetrahedron Lett. 1982, **23**, 1279.
- 122. Sternberg, E.; Binger, P. Tetrahedron Lett. 1985, 26, 301.
- 123. Brandi, A.; Goti, A. Chem. Rev. 1998, 98, 589.
- 124. Binger, P.; Schuchardt, U. Chem. Ber. 1980, **113**, 3334.
- 125. Binger, P.; Sternberg, E.; Wittig, U. Chem. Ber. 1987, **120**, 1933.
- 126. Binger, P.; Wedemann, P.; Kozhushkov, S. I.; de Meijere, A. Eur. J. Org. Chem. 1998, 113.
- 127. Binger, P.; Freund, A.; Wedemann, P. Tetrahedron 1989, 45, 2887.
- 128. Binger, P.; Germer, A. Chem. Ber. 1981, **114**, 3325.
- 129. Binger, P.; Brinkmann, A.; Wedemann, P. Chem. Ber. 1983, 116, 2920.
- 130. Binger, P.; Schäfer, B. Tetrahedron Lett. 1988, 29, 4539.
- 131. Buch, H. M.; Schroth, G.; Mynott, R.; Binger, P. J. Organomet. Chem. 1983, **247**, C63.
- 132. Binger, P.; Lü, Q.-H.; Wedermann, P. Angew. Chem., Int. Ed. Engl. 1985, **24**, 316.
- 133. Binger, P.; Schäfer, B. Tetrahedron Lett. 1988, **29**, 529.
- 134. Binger, P.; Brinkmann, A.; Roefke, P.; Schäfer, B. Liebigs Ann. Chem. 1989, 739.
- 135. Nakamura, I.; Oh, B. H.; Saito, S.; Yamamoto, Y. Angew. Chem., Int. Ed. Engl. 2001, **40**, 1298.
- 136. Inoue, Y.; Hibi, T.; Satake, M.; Hashimoto, H. J. Chem. Soc., Chem. Commun. 1979, 982.
- 137. Oh, B. H.; Nakamura, I.; Saito, S.; Yamamoto, Y. Tetrahedron Lett. 2001,

- **42**, 6203.
- 138. Weintz, H.-J.; Binger, P. Tetrahedron Lett. 1985, **26**, 4075.
- 139. Bapuji, S. A.; Motherwell, W. B.; Shipman, M. Tetrahedron Lett. 1989, 30, 7107.
- 140. Lewis, R. T.; Motherwell, W. B.; Shipman, M. J. Chem. Soc., Chem. Commun. 1988, 948.
- 141. Corlay, H.; Lewis, R. T.; Motherwell, W. B.; Shipman, M. Tetrahedron 1995, **51**, 3303.
- 142. Yamago, S.; Nakamura, E. J. Chem. Soc., Chem. Commun. 1988, 1112.
- 143. Yamago, S.; Nakamura, E. Tetrahedron 1989, 45, 3081.
- 144. Corlay, H.; Motherwell, W. B.; Pennell, A. M. K.; Shipman, M.; Slawin, A. M. Z.; Williams, D. J. Tetrahedron 1996, **52**, 4883.
- 145. Trost, B. M.; Chan, D. M. T.; Nanninga, T. N. Org. Synth. Coll. Vol.**7** 1990, 266.
- 146. Trost, B. M.; King, S. A.; Schmidt, T. J. Am. Chem. Soc. 1989, 111, 5902.
- 147. Cleary, D. G.; Paquette, L. A. Synth. Commun. 1987, 17, 497.
- 148. Trost, B. M.; Seoane, P.; Mignani, S.; Acemoglu, M. J. Am. Chem. Soc. 1989, **111**, 7487.
- 149. Trost, B. M.; Balkovec, J. M.; Angle, S. R. Tetrahedron Lett. 1986, **27**, 1445.
- 150. Trost, B. M.; Nanninga, T. N.; Chan, D. M. Organometallics 1982, **1**, 1543.
- 151. Trost, B. M.; Seoane, P. J. Am. Chem. Soc. 1987, 109, 3483.
- 152. Trost, B. M.; Seoane, P. J. Am. Chem. Soc. 1987, 109, 615.
- 153. Trost, B. M.; Parquette, J. R.; Marquart, A. L. J. Am. Chem. Soc. 1995, **117**, 3284.
- 154. Trost, B. M.; Mignani, S. M.; Nanninga, T. N. J. Am. Chem. Soc. 1986, **108**, 6051.
- 155. Trost, B. M.; Mignani, S. M.; Nanninga, T. N. J. Am. Chem. Soc. 1988, **110**, 1602.
- 156. Chaigne, F.; Gotteland, J.-P.; Malacria, M. Tetrahedron Lett. 1989, **30**, 1803.
- 157. Trost, B. M.; Yang, B.; Miller, M. J. Am. Chem. Soc. 1989, **111**, 6482.
- 158. Yamamoto, A.; Ito, Y.; Hayashi, T. Tetrahedron Lett. 1989, **30**, 375.
- 159. Trost, B. M.; Bonk, P. J. J. Am. Chem. Soc. 1985, 107, 8277.
- 160. Trost, B. M.; Sharma, S.; Schmidt, T. J. Am. Chem. Soc. 1992, **114**, 7903.
- 161. Trost, B. M.; King, S. A. J. Am. Chem. Soc. 1990, **112**, 408.
- 162. Trost, B. M.; Matelich, M. C. J. Am. Chem. Soc. 1991, **113**, 9007.

- 163. Trost, B. M.; Marrs, C. M. J. Am. Chem. Soc. 1993, 115, 6636.
- 164. Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1982, 104, 3733.
- 165. Trost, B. M.; Grese, T. A.; Chan, D. M. T. J. Am. Chem. Soc. 1991, **113**, 7350.
- 166. Trost, B. M.; Grese, T. A. J. Am. Chem. Soc. 1991, **113**, 7363.
- 167. Trost, B. M.; Higuchi, R. I. J. Am. Chem. Soc. 1996, **118**, 10094.
- 168. Trost, B. M.; Grese, T. A. J. Org. Chem. 1992, **57**, 686.
- 169. Franck-Neumann, M.; Kastler, A. Synlett 1995, 61.
- 170. Trost, B. M.; Lynch, J.; Renaut, P.; Steinman, D. H. J. Am. Chem. Soc. 1986, **108**, 284.
- 171. Trost, B. M.; Renaut, P. J. Am. Chem. Soc. 1982, 104, 6668.
- 172. Trost, B. M.; Nanninga, T. N. J. Am. Chem. Soc. 1985, 107, 1293.
- 173. Prato, M.; Suzuki, T.; Foroudian, H.; Li, Q.; Khemani, K.; Wudl, F.; Leonetti, J.; Little, R. D.; White, T.; Rickborn, B.; Yamago, S.; Nakamura, E. J. Am. Chem. Soc. 1993, **115**, 1594.
- 174. Tokuyama, H.; Yamago, S.; Nakamura, E.; Shiraki, T.; Sugiura, Y. J. Am. Chem. Soc. 1993, **115**, 7918.
- 175. Nakamura, E.; Tokuyama, H.; Yamago, S.; Shiraki, T.; Sugiura, Y. Bull. Chem. Soc. Jpn. 1996, **69**, 2149.
- 176. Boutorine, A. S.; Tokuyama, H.; Takasugi, M.; Isobe, H.; Nakamura, E.; Hélène, C. Angew. Chem., Int. Ed. Engl. 1994, **33**, 2462.
- 177. Irie, K.; Nakamura, Y.; Ohigashi, H.; Tokuyama, H.; Yamago, S.; Nakamura, E. Biosci. Biotech. Biochem. 1996, **60**, 1359; Chem. Abstr. 1996, **125**, 215866.
- 178. Yamago, S.; Tokuyama, H.; Nakamura, E.; Kikuchi, K.; Kananishi, S.; Sueki, K.; Nakahara, H.; Enomoto, S.; Ambe, F. Chem. Biology 1995, **2**, 385.
- 179. Cossy, J.; Belotti, D.; Pete, J. P. Tetrahedron Lett. 1987, **28**, 4547.
- Paquette, L. A.; Sauer, D. R.; Cleary, D. G.; Kinsella, M. A.; Blackwell, C. M.; Anderson, L. G. J. Am. Chem. Soc. 1992, 114, 7375.
- 181. Cotteland, J.-P.; Malacria, M. Tetrahedron Lett. 1989, **30**, 2541.
- 182. Trost, B. M.; Greenspan, P. D.; Yang, B. V.; Saulnier, M. G. J. Am. Chem. Soc. 1990, 112, 9022.
- 183. Trost, B. M.; Parquette, J. R. J. Org. Chem. 1994, **59**, 7568.
- 184. Hashimoto, K.; Ohfune, Y.; Shirahama, H. Tetrahedron Lett. 1995, **36**, 6235.
- 185. Ott, M. M.; Little, R. D. J. Org. Chem. 1997, **62**, 1610.
- 186. Padwa, A. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I.; Paquette, L. A., Eds.; Pergamon Press: Oxford, 1991; Vol. **4**, pp. 1069–1109.

- 187. Wade, P. A. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I.; Paquette, L. A., Eds.; Pergamon Press: Oxford, 1991; Vol. **4**, pp. 1111–1168.
- 188. Trost, B. M. Chem. Soc. Rev. 1982, 11, 141.
- 189. Paquette, L. A. Top. Curr. Chem. 1984, 119, 1.
- 190. Boger, D. L.; Brotherton-Pleiss, C. E. *Advances in Cycloaddition*; JAI Press Inc.: London, 1990; Vol. **2**, pp. 147–219.
- 191. Boger, D. L.; Brotherton, C. E. J. Am. Chem. Soc. 1986, 108, 6695.
- 192. Boger, D. L.; Brotherton, C. E. J. Am. Chem. Soc. 1986, 108, 6713.
- 193. Tokuyama, H.; Isaka, M.; Nakamura, E. J. Am. Chem. Soc. 1992, **114**, 5523.
- 194. Tokuyama, H.; Yamada, T.; Nakamura, E. Synlett 1993, 589.
- 195. Tokuyama, H.; Isobe, H.; Nakamura, E. Bull. Chem. Soc. Jpn. 1995, **68**, 935.
- 196. Isobe, H.; Tokuyama, H.; Sawamura, M.; Nakamura, E. J. Org. Chem. 1997, **62**, 5034.
- 197. Nakamura, E.; Isobe, H.; Tomita, N.; Sawamura, M.; Jinno, S.; Okayama, H. Angew. Chem., Int. Ed. Engl. 2000, **39**, 4254.
- 198. Eidenschink, R.; Kauffmann, T. Angew. Chem., Int. Ed. Engl. 1972, **11**, 292.
- 199. Boche, G.; Martens, D. Angew. Chem., Int. Ed. Engl. 1972, 11, 724.
- 200. Ford, W. T.; Luteri, G. F. J. Am. Chem. Soc. 1977, 11, 5330.
- 201. Beak, P.; Burg, D. A. J. Org. Chem. 1989, **54**, 1647.
- 202. Panek, J. S. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. **1**, pp. 596–607.
- 203. Danheiser, R. L.; Carini, D. J.; Basak, A. J. Am. Chem. Soc. 1981, **103**, 1604.
- 204. Danheiser, R. L.; Dixon, B. R.; Gleason, R. W. J. Org. Chem. 1992, **57**, 6094.
- 205. Masse, C. E.; Panek, J. S. Chem. Rev. 1995, **95**, 1293.
- 206. Knölker, H.-J. J. Prakt. Chem. 1997, **339**, 304.
- 207. Akiyama, T. J. Synth. Org. Chem. Jpn. 2000, **58**, 285; Chem. Abstr. 2000, **132**, 293512n.
- 208. Herndon, J. W.; Wu, C.; Harp, J. J.; Kreutzer, K. A. Synlett 1991, 1.
- 209. Panek, J. S.; Jain, N. F. J. Org. Chem. 1993, 23, 2345.
- 210. Welker, M. E. Chem. Rev. 1992, 92, 97.
- 211. Giering, W. P.; Rosenblum, M. J. Am. Chem. Soc. 1971, **93**, 5299.
- 212. Cutler, A.; Ehntholt, D.; Giering, W. P.; Lennon, P.; Raghu, S; Rosan, A.; Rosenblum, M.; Tancrede, J.; Wells, D. J. Am. Chem. Soc. 1976, **98**,

- 3495.
- 213. Rosenblum, M.; Watkins, J. C. J. Am. Chem. Soc. 1990, 112, 6316.
- 214. Hayamawa, Y.; Yokoyama, K.; Noyori, R. J. Am. Chem. Soc. 1978, 100, 1791.
- 215. Hayakawa, Y.; Yokoyama, K.; Noyori, R. J. Am. Chem. Soc. 1978, **100**, 1799.
- 216. Hayakawa, Y.; Noyori, R. Org. React. 1983, 29, 168.
- 217. Masuya, K.; Domon, K.; Tanino, K.; Kuwajima, I. J. Am. Chem. Soc. 1998, **120**, 1724.
- 218. Mizuno, H.; Komon, K.; Masuya, K.; Tanino, K.; Kuwajima, I. J. Org. Chem. 1999, 64, 2648.
- 219. Cekovic, Z.; Saicic, R. Tetrahedron Lett. 1986, 27, 5893.
- 220. Curran, D. P.; Chen, M.-H. J. Am. Chem. Soc. 1987, 109, 6558.
- 221. Beal, R. B.; Dombroski, M. A.; Snider, B. B. J. Am. Chem. Soc. 1986, **51**, 4391.
- 222. Wiering, P. G.; Verhoeven, J. W.; Steinberg, H. J. Am. Chem. Soc. 1981, **103**, 7675.
- 223. Shimizu, I.; Ohashi, Y.; Tsuji, J. Tetrahedron Lett. 1985, **26**, 3825.
- 224. Miura, K.; Fugami, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1988, **29**, 5135
- 225. Feldman, K. S.; Romanelli, A. L.; Ruckle Jr., R. E.; Miller, R. F. J. Am. Chem. Soc. 1988, **110**, 3300.
- 226. Mariano, J. P.; Laborde, E. J. Am. Chem. Soc. 1985, **107**, 734.
- 227. Saigo, K.; Shimada, S.; Shibasaki, T.; Hasegawa, M. Chem. Lett. 1990, 1093.
- 228. Crimmins, M. T.; Nantermet, P. G. J. Org. Chem. 1990, **55**, 4235.
- 229. Kuwajima, I.; Nakamura, E. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. **2**, pp. 441–473.
- 230. Zhang, C.; Lu, X. J. Org. Chem. 1995, **60**, 2906.
- 231. Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Am. Chem. Soc. 1997, **119**, 3836.
- 232. Takeda, K.; Fujisawa, M.; Makino, T.; Yoshii, E. J. Am. Chem. Soc. 1993, **115**, 9351.
- 233. Molander, G.; Shubert, D. C. J. Am. Chem. Soc. 1986, **108**, 4683.
- 234. Li, Y.-Q.; Li, C.-J. Tetrahedron Lett. 1996, **37**, 471.
- 235. Binger, P.; Bentz, P. J. Organomet. Chem. 1981, 221, C33.
- 236. Painter, S. L.; Blackstock, S. C. J. Am. Chem. Soc. 1995, 117, 1441.
- 237. Noyori, R.; Hayashi, N.; Kato, M. J. Am. Chem. Soc. 1971, 93, 4948.

- 238. Noyori, R.; Yamakawa, M.; Takaya, H. Tetrahedron Lett. 1978, 48, 4823.
- 239. Little, R. D.; Brown, L. Tetrahedron Lett. 1979, 21, 2203.
- 240. Lautens, M.; Ren, Y.; Delanghe, P. H. M. J. Am. Chem. Soc. 1994, **116**, 8821.
- 241. Trost, B. M.; Matelich, M. C. Synthesis 1992, 151.
- 242. Trost, B. M.; Parquette, J. R.; Nübling, C. Tetrahedron Lett. 1995, **36**, 2917.
- 243. Raghavan, S.; Ishida, M.; Shinozaki, H.; Nakanishi, K.; Ohfune, Y. Tetrahedron Lett. 1993, **34**, 5765.
- 244. Trost, B. M.; Acemoglu, M. Tetrahedron Lett. 1989, **30**, 1495.
- 245. Binger, P.; Brinkmann, A.; Richter, W. J. Tetrahedron Lett. 1983, **24**, 3599.
- 246. Leonetti, J. A.; Gross, T.; Little, R. D. J. Org. Chem. 1996, 61, 1787.
- 247. Trost, B. M.; Schneider, S. Angew. Chem., Int. Ed. Engl. 1989, 28, 213.
- 248. Trost, B. M.; King, S. A.; Nanninga, T. N. Chem. Lett. 1987, 15.
- 249. Trost, B. M.; Yamazaki, S. Chem. Lett. 1994, 2245.
- 250. Rosenstock, B.; Gais, H.-J.; Herrmann, E.; Raabe, G.; Binger, P.; Freund, A.; Wedemann, P.; Krüger, C.; Lindner, H. J. Eur. J. Org. Chem. 1998, 257.
- 251. Baker, R.; Keen, R. B. J. Organomet. Chem. 1985, 285, 419.
- 252. Suzuki, T.; Maruyama, Y.; Akasaka, T.; Ando, W.; Kobayashi, K.; Nagase, S. J. Am. Chem. Soc. 1994, **116**, 1359.
- 253. Shiu, L.-L.; Lin, T.-I.; Peng, S.-M.; Her, G.-R.; Ju, D. D.; Lin, S.-K.; Hwang, J.-H.; Mou, C. Y.; Luh, T.-Y. J. Chem. Soc., Chem. Commun. 1994, 647.
- 254. Yamago, S.; Nakamura, E. Chem. Lett. 1996, 395.
- 255. Binger, P.; Schuchardt, U. Chem. Ber. 1980, **113**, 1063.
- 256. Watanabe, S.; Kurosawa, H. Organometallics 1997, 16, 3601.
- 257. Motherwell, W. B.; Shipman, M. Tetrahedron Lett. 1991, **32**, 1103.
- 258. Stone, K. J.; Little, R. D. J. Am. Chem. Soc. 1985, **107**, 2495.
- 259. Lewis, R. T.; Motherwell, W. B.; Shipman, M.; Slawin, A. M. Z. Tetrahedron 1995, **51**, 3289.
- 260. Trost, B. M.; King, S. A. Tetrahedron Lett. 1986, **27**, 5971.
- 261. Trost, B. M.; Moeller, K. D. Heterocycles 1989, 28, 321.
- 262. Wilson, R. M.; Geiser, F. J. Am. Chem. Soc. 1978, 100, 2225.
- 263. Ikeda, H.; Nakamura, T.; Miyashi, T.; Goodman, J. L.; Akiyama, K.; Tero-Kubota, S.; Houmam, A.; Wayner, D. D. M. J. Am. Chem. Soc. 1998, **120**, 5832.
- 264. Adam, W.; Bottle, S. E.; Finzel, R.; Kammel, T.; Peters, E.-M.; Peters, K.;

von Schnering, H. G.; Walz, L. J. Org. Chem. 1992, **57**, 982.